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Abstract
Ultra-High Performance Concrete (UHPC) surpasses conventional concrete in performance. However, pro-
ducing UHPC with consistent mechanical properties, even with an identical recipe, remains challenging. 
The quality of UHPC can be significantly influenced by material quality, environmental factors, and human 
intervention during large-scale production. This study, for the first time, takes a holistic view of the UHPC 
manufacturing process to investigate the impact of material quality, environmental conditions, measurement 
errors, and mixing and curing conditions on the final mechanical properties. This comprehensive approach to 
the UHPC manufacturing process presents two challenges. First, there is no publicly available dataset for this 
research. Therefore, 150 experiments were conducted, measuring both Compressive and Flexural Strength 
after 28 days of curing, resulting in two experimental datasets for this study. Second, this wide view increases 
data dimensionality and, coupled with the high cost of UHPC experiments, yields sparse data. Traditional 
evolutionary algorithms, while effective in feature selection, struggle in high-dimensional, small-sample data. 
To address this, an Informed Non- dominated Sorting Genetic Algorithm II (I-NSGA-II) is developed in this 
study, incorporating domain-specific knowledge to enhance prediction accuracy and solution stability. Com-
parative evaluations using different machine learning algorithms on the two experimental datasets and a data-
set generated by a test function demonstrated the significant superiority of I-NSGA-II over the classic NS-
GA-II. Finally, the significance of each studied parameter on the mechanical behavior of UHPC is discussed.

Keywords:  Ultra-High Performance Concrete; Concrete Manufacturing Process;  Ensemble-based Outlier 
Detection; Multiobjective Feature Selection; Data-Driven Modeling
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1.  Introduction
Concrete is the second-most consumed resource globally, after water, and cement production, as the cornerstone of any 

type of concrete, accounts for around 7 % of CO2  emissions worldwide [1].

Ultra-high performance concrete (UHPC) is an advanced cement-based composite known for its exceptional 
mechanical strength and durability. It typically contains a high volume of short steel fibers (around 2 % by volume) 
distributed within a dense matrix with a low water-to-binder ratio, often incorporating silica fume. This composition 
allows UHPC to exhibit uniaxial tensile hardening behavior, leading to stable microcracks and excellent transport 
properties even under demanding conditions. These characteristics make UHPC ideal for innovative applications such as 
bridge construction, structural strengthening, and waterproofing. However, the high cement and silica fume content con-
tribute to increased production costs and a significant CO2  footprint [2].

Additionally, the production process for UHPC is highly sensitive [3–6], with minor deviations from the rec-
ipe or changes in environmental conditions drastically impacting consistency and mechanical behavior, leading to 
increased waste. To address these issues, the construction industry requires an advanced support system capable of 
predicting UHPC properties in real time. Such a system would enhance quality control during production, reduce 
waste, improve product quality, and achieve cost savings.

To date, investigations into the UHPC manufacturing process have typically focused on individual factors 
rather than a comprehensive analysis of all relevant variables. Consequently, there are no published datasets that en-
compass the full  spectrum  of variables  affecting  UHPC production  and  quality.  In  this  study,  we  conduct  
a  systematic investigation of variations arising from all relevant factors around a reference UHPC production 
condition (Figure1). We examine the impact of raw material properties (such as impurities and particle size distri-
bution), dosing system errors, mixing duration and speed, and environmental conditions (affecting both raw materi-
als and specimen curing) on UHPC quality. Modeling the UHPC production process holistically presents significant 
challenges due to the complex physical and chemical subprocesses involved. Generating data for a single exper-
imental point requires 28 days, making the process extremely time-consuming and costly. To address this, a two-
phase experimental design was implemented in this study to generate 150 data points, optimally covering the input 
space. However, the high dimensionality and small sample size of the data further complicate modeling efforts. 
Standard methods, such as sequential feature selection and recursive feature elimination, often struggle to identify 
nuanced patterns in sparse data, frequently missing critical relationships and becoming trapped in local minima [7,8]. 
While evolutionary multiobjective feature selection methods can outperform grid search-based approaches, they are 
less effective when applied to high-dimensional, small-sized datasets.

Figure 1: Modeling of Reproducible UHPC with Consistent Properties1

1 Ultra-High Performance Concrete Manufacturing Process: Production and testing processes, influencing factors, and key considerations regarding the 
impact of material quality, measurement errors, and environmental conditions on final UHPC mechanical quality [6]. (El.: Electrical, CS: Compressive 
Strength, FS: Flexural Strength)
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To address these challenges, this paper focuses on dimensionality reduction in multiple steps. By injecting 
domain knowledge into the classic Non-dominated Sorting Genetic Algorithm II (NSGA-II), prediction re-
sults and solution stability are enhanced. The proposed Informed NSGA-II (I-NSGA-II) in this study address-
es high dimensionality issues with small sample sizes for evolutionary multiobjective feature selection.

To the authors’ knowledge, this is the first study to provide a holistic view of the UHPC manufacturing 
process by investigating the causal effects of various variables on final product quality consistency from an 
application perspective. Additionally, this study uniquely addresses evolutionary multiobjective feature selec-
tion by incorporating prior knowledge into the Non-dominated Sorting Genetic Algorithm II, thereby enhanc-
ing prediction performance and solution stability for high-dimensional datasets with small sample sizes. The 
contributions of this paper are summarized as follows:

•  Present a holistic approach to the UHPC manufacturing process.

•  Investigate the impact of material quality, environmental conditions, measurement errors, and mixing and 
curing conditions on reproducibility of UHPC with consistent mechanical properties, as well as the relation 
of fresh UHPC characteristics with these mechanical properties.

•  Introduce a Human-in-the-Loop Ensemble-based Outlier Detection Method, informed by expert insights, 
to enhance data quality.

2.  Related Work

2.1.  Machine Learning Applications in Predicting Concrete Mechanical Properties
The task of predicting concrete compressive strength (CS), particularly its 28-day CS, is typically addressed 

by two major approaches: traditional empirical models and modern machine learning techniques [11]. One of 
the earliest empirical methods, known as Abram’s Law [12], is:

                                                                                                                                               (1)
where a0  and a1  are empirical constants, and w and c represent the quantities of water and cement, respec-

tively. An advancement of this method is multiple linear regression [13]:

                                                                                                (2)
which incorporates the water-to-cement ratio w/c, amounts of coarse (CA) and fine aggregate (FA), and 

cement quantity (C). However, these models do not consider all the complex steps in the concrete production 
process. This makes it hard to accurately predict the properties of advanced concrete types like UHPC [14].

The significance of mix proportion parameters is emphasized by Ozbay et al. [ 15], yet environmental vari-
ables and curing conditions are overlooked. Farzampour [16] highlights certain mix proportion parameters 
while acknowledging environmental factors during curing; however, a comprehensive analysis of these as-
pects is lacking, and an in- depth examination of curing conditions is not conducted. The necessity of longer 
mixing times to achieve optimal homogeneity in UHPC, compared to CC and HPC, is pointed out by Sa-
franek [17], which also cautions against high mixing speeds due to potential thermal effects.

The initial challenge in adopting machine learning techniques for concrete research is the scarcity of com-
prehensive and reliable datasets. The datasets on Compressive Strength [18] and Slump Flow Test [19], com-
piled by Yeh from various research sources, are widely used. Despite their extensive utilization  [13, 20–28], 
these datasets exhibit significant shortcomings: limited coverage of input factors across the concrete produc-
tion process and potential inconsistencies in material quality and production conditions, including mixing and 
curing processes. These issues compromise the utility of the datasets for both academic and practical applica-
tions [6,29].

Nguyen et al. [30] employed the XGBoost model to forecast the CS of UHPC using a dataset of 931 UHPC 
mix formulations, compiled from laboratory experiments and existing literature, encompassing 17 input vari-
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ables. The study aimed to enhance precision in UHPC compressive strength estimates and facilitate the de-
velopment of new UHPC mixtures, reducing both time and costs associated with their creation. Despite these 
ambitious objectives, Nguyen et al.’s methodology presents notable limitations. The amalgamation of data 
from varied sources without stringent standardization introduces biases, potentially skewing results. More-
over, the study’s exclusive reliance on the XGBoost algorithm and intensive focus on hyperparameter tuning 
at the expense of feature selection restricts the research scope. Such a narrowed focus overlooks potential 
insights from a broader spectrum of algorithms and a comprehensive evaluation of input features’ relevance. 
Additionally, the absence of possible uncertainties in material quality, material dosing, mixing, and curing 
conditions in the analysis undermines the model’s practical applicability, given their critical role in determin-
ing UHPC’s compressive strength.

Designing a pipeline for the concrete production process with sparse data is a topic that has been rarely re-
searched [31–33]. The recently proposed pipeline for modeling concrete production and optimizing concrete 
mixtures [33] overlooks key aspects of managing high-dimensional datasets, especially the complexities of 
small datasets with high dimensionality and a comprehensive understanding of the concrete production pro-
cess, including material quality and curing time. Its approach to data generation – limited to compiling data 
from various sources – risks introducing redundancy. Moreover, the reliance on a narrow set of tree-based 
machine learning algorithms may not adequately capture the complexity of the data. The study also lacks cru-
cial preprocessing steps, such as outlier detection and appropriate handling of missing values, opting instead 
for simple mean imputation. Furthermore, its simplistic training- testing strategy, which relies on a single data 
split, fails to ensure model reliability across various data partitions.

Despite advancements in predicting concrete strength, significant gaps remain, underscoring the challenges 
in capturing the full spectrum of variables that influence end-product quality [34]. These gaps encompass lim-
ited data coverage, including material quality, measurement errors, and mixing and curing conditions, which 
lack a holistic view of the production process. These issues can cause discrepancies inUHPC’s final quality 
even with identical recipes [35]. Other challenges include systematic data generation, ineffective feature se-
lection methods struggling with the high- dimensional nature of the data, inadequate training-test strategies 
[36–45], and a narrow range of explored algorithms [ 14,46–53].

Addressing these challenges, this work takes a holistic view of the UHPC manufacturing process to inves-
tigate the effect of material quality, uncertainties in material dosing and particle size distribution, and mixing 
and environmental conditions on final mechanical UHPC properties. This is achieved by introducing an Au-
tomatic Modeling Pipeline that includes advanced data collection, data cleaning, and sophisticated feature se-
lection techniques designed to fully capture the complexities of the UHPC manufacturing process. Employing 
a diverse array of 10 machine learning algorithms and adopting a Leave-One-Out Cross Validation  (LOOCV)  
[54]  training-test  strategy  with multiple initializations, the proposed methodology ensures the reliability of 
UHPC mechanical properties predictions.

2.2.  Evolutionary Multiobjective Feature Selection
In the domain of machine learning, especially with high-dimensional and small datasets, feature selection 

(FS) is a pivotal process aimed at enhancing model interpretability, reducing overfitting, and improving pre-
diction performance by eliminating irrelevant or redundant features from the dataset [55]. Traditionally, FS 
methods have been categorized into three approaches: filter, wrapper, and embedded [7]. However, these 
methods often suffer from a high possibility of selecting redundant features, experiencing nesting effects, and/
or falling into local optima, especially in complex datasets with high dimensionality [7,8].

Feature selection faces three main challenges [8]: the exponential growth of the search space with the num-
ber of features; possibly complex interactions among features, where redundancy and complementarity sig-
nificantly impact prediction performance; and the inherent multiobjective nature of feature selection, which 
requires a trade-off between maximizing prediction performance and minimizing feature count, which are 
often conflicting objectives. Significant advancements have been made with the incorporation of evolutionary 
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multiobjective optimization (EMO) techniques into feature selection. However, due to the inherent random-
ness of the evolutionary process, the outcomes are often unstable, especially when dealing with complex 
datasets and conditions of data sparsity.

Despite the widespread adoption of multiobjective feature selection (MOFS) due to its capability in global 
optimization, which eliminates the need for prior assumptions in these algorithms, and their adeptness at han-
dling high- dimensional cases, they typically require relatively large datasets. This necessity, coupled with the 
inherent randomness of evolutionary processes, contributes to the instability of results obtained from EMO, 
especially in complex datasets with high dimensionality. As a result, they have been applied primarily to 
high-dimensional datasets but with large data sizes, especially in classification tasks [56–60]. These challeng-
es are more pronounced in scenarios involving high-dimensional datasets with limited samples, highlighting 
the need for innovative approaches.

To address the above challenges in high-dimensional datasets with small sizes, the integration of prior 
knowledge in the process of feature selection is necessary [61]. Evolutionary multiobjective feature selection 
methodologies distinguish themselves through various core design elements, including solution representa-
tion, evaluation functions, initialization  strategies,  offspring  generation  methods,  environmental  selection  
techniques,  and  decision-making processes [8]. One potential for the integration of prior knowledge is in the 
initialization of solutions and also in the mutation function of the feature selection process.

Kropp et al.  [62] present a Sparse Population Sampling technique to enhance the efficiency of optimization 
algorithms in sparse settings by seeding the population with sparse initial solutions, reflecting a strategic use 
of prior knowledge for algorithm initialization. Similarly, a study by Xu et al. [63] introduces an evolutionary 
approach that employs duplication analysis to streamline the feature selection process, leveraging patterns 
of feature redundancy to implicitly incorporate prior insights. Song et al. [64] combine feature clustering 
based on correlations with particle swarm optimization, using prior knowledge of feature relationships to 
address feature selection challenges. Ren et al.[65] develop an algorithm for sparse optimization, hinting at 
the consideration of the distribution of non-zero elements to inform its strategy, thus possibly integrating do-
main-specific knowledge indirectly. Additionally, Wang et al. [66] apply multiobjective differential evolution 
to balance feature count minimization with classification performance, potentially adjusting evaluation crite-
ria based on domain-specific feature importance, suggesting an indirect method of utilizing prior knowledge.

Despite these advancements, none of these methods explicitly utilize predefined features as prior knowl-
edge, nor do they directly address problems characterized by high dimensionality combined with small sam-
ple sizes.

There is a significant gap in addressing the challenges of EMO in MOFS tasks, particularly in achieving 
stable results with high-dimensional datasets and small sample sizes. Integrating domain expertise and prior 
knowledge can influence initial conditions and evaluation trajectories, potentially enhancing the stability and 
performance of EMO in these contexts. This gap is addressed in this work by the direct utilization of domain 
knowledge in partially initializing algorithm populations and by finely adjusting mutation probabilities to bal-
ance exploration and exploitation. This approach embeds predefined, domain-specific knowledge at the outset 
of the optimization process, ensuring that evolutionary trajectories are informed by critical insights from the 
start.

3.  Informed Automatic Modeling Pipeline for UHPC Production Process
This section outlines the establishment and application of a modeling pipeline specifically tailored for the 

UHPC production process, as depicted in Figure 2. The process begins with the Design of Experiments and 
Augmentation of Design techniques to compile comprehensive datasets. This step is followed by data prepro-
cessing to prepare the data for modeling.

The next phase introduces the Ensemble-based Feature Importance Determination [6], utilizing the pre-
pared data to identify significant features as prior knowledge for the next step. The culmination of the pipe-
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line is the block of Informed Evolutionary Multiobjective Feature and Algorithm Selection (IEM-FAS), 
which implements a systematic approach to optimize feature and algorithm selection, specifically designed 
for high-dimensional, small datasets typical in UHPC production. This phase enables the progressive and 
systematic integration of proposed features based on their significance, thereby facilitating the model’s devel-
opment in the final stage.

Figure 2: Modeling of Reproducible UHPC with Consistent Properties2

3.1.  Data Generation
A dataset of x ∈ R22 with N = 150 observations and two outputs (Compressive and Flexural Strength on 

Day 28 after the mixing process) was generated for this work. For a detailed description of this dataset, in-
cluding the complete data generation and analysis processes, readers are encouraged to refer to [67].

3.1.1.   Key Factors and Characteristics in UHPC Production Process

For this study, a fixed reference recipe with a constant amount of materials is considered. However, the 
quality of UHPC can be influenced by various critical factors throughout its production process. These fac-
tors include material quality, particle size distribution, environmental conditions during raw material storage, 
measurement errors in the dosing system, and mixing and curing conditions (refer to Table 1). To evaluate the 
quality of UHPC, alongside mechanical tests at different ages, temperature, electrical conductivity, air con-
tent, slump flow test [68], and funnel runtime are also measured in the fresh state.

In the initial stage, the effect of material quality, environmental conditions during raw material storage, and 
impurities in silica fume are examined by considering variables such as Material Delivery Batch Time (DB), 
Cement Reactivity (CR), Ingredient Moisture (IM), Ingredient Temperatures (IT), and Graphite content (GRP). 
Materials are delivered in different batches, and even those from the same company (classified as DB1 and 
DB2) may exhibit subtle differences. These distinctions, though minor, can introduce variability in material 
quality at the microstructural level,  emphasizing the need to account for such nuances in the production pro-
cess. Cement Reactivity, influenced by its chemical composition and external factors such as storage duration 
and environmental conditions, is classified based on storage time. Varying humidity levels during storage can 
alter the cement’s reactivity, impacting the final UHPC quality. Concrete raw materials in industrial settings 
are typically stored outside without protection from the sun, rain, and humidity. To simulate these conditions, 

Figure  2:  Proposed  Automatic   Modeling  Pipeline  for   Ultra-High   Performance  Concrete  Manufacturing  Process:  A Comprehensive Approach from 
Data Generation to Modeling. (DG: Data Generation, GA: Genetic Algorithm, LHS: Latin Hypercube Sampling, AoD: Augmentation of Design, DoE: 
Design of Experiments, L: Layer, DPP: Data Preprocessing, HIE-OD: Human-in-the-Loop Informed Ensemble-based Outlier Detection, FI: Feature Impor-
tance, MAE: Mean Absolute Error, P-Fs & Alg.: Proposed Features & Algorithm)
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the temperature of raw materials before mixing is artificially set to different values. In addition to the fixed 
water value in the reference recipe, variations simulating humidity are considered. One of the crucial charac-
teristics of UHPC is its low water content formulation; thus, impurities that absorb water are significant. High 
carbon content in silica fume can reduce workability by absorbing water, impacting cement hydration and 
final UHPC quality.

The formulation of the recipe, including appropriate ratios of aggregates, Superplasticizers (SPP), and sili-
ca fume, is critical for UHPC’s strength and durability. Precision in measuring these ingredients and potential 
measurement errors, along with variations in particle size distribution, introduce complexities. Although these 
errors may be small (see Table 1), they can lead to significant variations in UHPC quality, especially when 
amplified by mixing parameters such as Speed (MS) and Duration (MD). Properties of fresh concrete, includ-
ing Temperature (FCT), Electrical Conductivity (EC), Air Content (AC), Slump Flow (SF), and Funnel Run-
time (FR), are crucial for assessing homogeneity, workability, and structural integrity of UHPC. These factors 
are considered to predict final product quality and provide feedback to operators to avoid off-spec products at 
the fresh stage of UHPC.

In real UHPC applications, the product is used worldwide under varying environmental conditions. To sim-
ulate this variability, different curing conditions, detailed in Figure 3, involving two main stages, are designed 
in this study. Initially, the UHPC transitions from paste to a hardened state with minimal strength. During the 
first 24 hours, it is either stored in a humidity-controlled cabinet at 90 % relative humidity and 20 ℃ (Figure 
3a) or covered with plastic film and stored at 20 to 40 ℃, depending on environmental conditions (Figure 
3b). After the first 24 hours, the specimens are demolded and cured until day 28. They are either maintained 
in plastic film at 20 ℃ (Figure 3c) or submerged in water with temperatures varying from 20 to 40 ℃(Figure 
3d). Integrating these conditions into the developed pipeline provides an in-depth understanding of UHPC 
production, aiming for optimization and consistency in quality.

Figure 3: Illustration of Various Curing Conditions Employed in this Work on UHPC Production Process

By analyzing information at the fresh stage and adjusting curing conditions, operators can avoid waste and 
achieve the desired product quality.

3.1.2.  Experimental Design and Methodology

This study initiated a structured experimental campaign, comprising 150 designed experiments performed 
at G.tecz Engineering GmbH in Germany, to delve into the UHPC manufacturing process. Addressing the 
challenges of data generation in this field, particularly the aspects of cost and time, we implemented a du-
al-phase approach: the Screening Phase for initial data analysis [6] and the Optimal Phase for detailed process 
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modeling. The first phase established objectives, identified relevant variables, and carried out preliminary 
analyses, utilizing the Taguchi Orthogonal Array (TOA)  [69]. TOA is favored for its  efficiency in managing 
high-dimensional spaces with a limited number of experiments, ensuring a balanced distribution of input vari-
ables. In the subsequent phase, the experimental design was augmented through a process incorporating Latin 
Hypercube Sampling (LHS) [70], which strategically places additional points within the input space to opti-
mize the experimental layout. A Genetic Algorithm [71] maximized the mean distance between these points 
(S-Optimality [72]), facilitating a comprehensive examination of the input space. The optimal integration of 
TOA and LHS data points established a robust foundation for further analysis.

The Screening Phase analysis led to the elimination of three variables: Cement Reactivity (CR), Mixing 
Speed (MS), and Mixing Duration (MD) [6]. These were determined to have negligible impacts on the final 
quality of the concrete and were therefore excluded from further consideration. For a more detailed under-
standing of the Screening Phase methodology and its results, interested readers are encouraged to consult [6].

3.1.3.  General Setting

Throughout the experiments, the same mixing tool was used, with controlled environmental conditions for 
material storage and production to mitigate seasonal variations. The temperature of the mixer chamber was 
consistently maintained near the ambient laboratory temperature of 20 ℃ and was monitored before each ex-
periment to ensure minimal impact on process variability.

3.2.  Data Preprocessing
The collected data undergoes two stages of preprocessing: preliminary processing and outlier detection.

3.2.1.  Preliminary Data Processing

Data standardization and normalization are utilized to enhance model performance. Standardization scales 
data to have a mean of zero and a standard deviation of one, while normalization scales data to fall within the 
range of [0, 1]. This normalization improved consistency and comparability across features, leading to better 
model performance in this study. As next step, to reduce dimensionality and prevent multicollinearity, Pear-
son’s correlation coefficient [73] is used to identify and remove highly correlated inputs. This process helps in 
simplifying the model and improving its generalizability.

Iterative Imputation is employed to handle missing data, which constitutes 4 % of the dataset. Traditional 
imputation methods like mean or median imputation often fail to capture complex feature correlations and 
can result in biased estimates [74, 75]. Iterative Imputation  [76–78], on the other hand, treats each variable 
with missing values as a function of other variables in a sequential process, offering a refined estimation that 
respects complex interdependencies among variables. This method, implemented using Scikit-Learn’s Itera-
tiveImputer [79], employs Bayesian Ridge Regression [80–82] – the default model for the IterativeImputer 
function – to iteratively model and predict missing values, ensuring a more accurate and robust handling of 
the incomplete UHPC data.

3.2.2. Human-in-the-Loop Informed Ensemble-based Outlier Detection

Traditional techniques often  struggle  to identify  outliers in  complex datasets  [83].  Several  outlier  de-
tection methodologies, each beneficial in specific contexts, have been developed. These include statistical 
methods that detect deviations through probabilistic models, distance-based approaches that assess spatial 
separation, clustering-based strategies that identify outliers as ill-fitting data points within clusters, and densi-
ty-based methods that pinpoint outliers due to their relative isolation in the data space [84,85].

However, these methods face challenges in specific scenarios, such as with small or sparsely distributed 
datasets, which are common in Design of Experiments contexts. This issue is particularly pronounced in 
high-dimensional datasets with small sample sizes, where the goal is to evenly cover the input space. Their 
reliance on proximity or density can lead to inaccuracies in outlier detection when data points lack sufficient 
neighborhood, cluster, or density characteristics (see Figure 4), potentially resulting in critical errors in mea-
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surement outputs  [83, 85–88]. Furthermore, traditional methods such as box plots, histogram plots, and lin-
ear regression, which primarily focus on linear relationships, prove inadequate in non-linear contexts [83].

Figure 4: Visual Representation of an L9(33 ) Orthogonal Array [69]: Given the sparse data design by 
Taguchi Orthogonal Array, data points cannot be selected based on their distance, density, or neighborhood.

This paper introduces a novel method that combines expert knowledge and Human-in-the-Loop (HITL) 
insights with the robustness and generalization capabilities of ensemble methods to enhance outlier detection 
reliability in our case study. The proposed method, named Human-in-the-Loop Informed Ensemble-based 
Outlier Detection (HIE-OD) (Figure 5), is founded on five key principles:

• Diverse Base Learners

•  Application of the Law of Large Numbers

•  Domain Expertise for Informed Filtering

•  Majority Voting for Ensemble Decision to Recommend Possible Outliers

• HITL Intervention for Final Decision-Making

Figure 5:  Human-in-the-Loop  Informed  Ensemble-based  Outlier  Detection  (HIE-OD): Advancing outlier 
detection with informed ensemble-based  method,  leveraging  expert  knowledge  and  Human-in-the-Loop  

for  precise  anomaly detection. Possible outliers, recommended by the informed ensemble component of 
HIE-OD, are then subject to final decisions made through human intervention in a HITL process.

An ensemble learning approach, inspired by the wisdom  of  the   crowd concept, enhances decision-mak-
ing in machine learning by leveraging collective intelligence [89]. This method aggregates insights from 
various base learners (BLs), each contributing unique perspectives, thereby improving generalization and re-
ducing overfitting [89]. The ensemble aims to achieve or exceed the average performance of its base learners, 
with diversity in the ensemble reducing error, as demonstrated by:
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                                                                  (3)
where Errorindividuals  is the ensemble base learners’(BLs) errors, M is the count of BLs, and Ambiguity 

measures their diversity [90]. This illustrates how diversity minimizes the overall error [91]. Depending 
on the application, the Law of Large Numbers supports this principle by indicating that a larger number of 
observations leads to a sample average that more accurately reflects the population mean, which is vital for 
effective outlier detection:

                                                                                                                  (4)
Here, ON  represents the average of N observations, and μ is the mean value of the population, highlighting 

the improved reliability with an increasing number of observations. This convergence, as observed in our 
case study, assumes that the observations are independent, identically distributed, and exhibit finite variance. 
To leverage this principle, the proposed outlier detector incorporates 10 diverse BLs, ranging from linear to 
non-linear, parametric to non-parametric, and simple to complex algorithms, as illustrated in Figure 5.

For a dataset comprising N data points {d1; d2; … ; dN } and a set of models, the residual Rij for the j-th data 
point

against predictions from all models is calculated by the proposed method as:

                                                                                                           (5)
where yj  is the actual value for the j-th data point, ij(dj) denotes the predicted value for the j-th data point 

by the i-th model. A data point is flagged as a possible outlier if:

                                                                                                           (6)
where    is the threshold defined by expert knowledge.

The ultimate decision on outliers is determined using a wisdom  of  the  crowd approach, which requires 
more than 50 % agreement among the algorithms:

                                                                                               (7)
where C(d) denotes the consensus for data point d , fi (d) represents the decision function of the i-th BL, M is the 

total number of BLs, and    is the consensus threshold set at 15 MPa. The indicator function 1 returns 1 if Ri (d) >   
. A data point d is considered a possible outlier if C(d) exceeds 0.5, indicating majority consensus. If C(d) ex-
ceeds 0.5, the data point d is recommended to the HITL for further analysis. The 50 % threshold is the minimum 
required for the effectiveness of wisdom  of  the  crowd   (majority  voting), as a binary decision process 
requires more than half of the votes to favor an option for it to be selected [92]. Setting the threshold below this 
compromises the purpose of majority voting, while setting it above risks missing true positives. In this study, 
setting the threshold at 60 % ensures that at least 6 out of 10 base learners agree, which balances minimizing false 
positives with maintaining the effectiveness of the wisdom of the crowd. By leveraging a blend of multiple 
BLs, informed detection criteria, and a consensus- and HITL-enhanced decision framework, the HIE-OD presents 
a comprehensive, sophisticated, and flexible approach to outlier detection.

3.3.  Ensemble-based Feature Importance Determination
Within the context of this work, the Ensemble-based Feature Importance Determination (E-FID) framework 

has been deployed to analyze factors influencing UHPC quality. Unlike approaches that rely on a single 
model, the ensemble method is recognized for integrating insights from a diverse array of predictive algorithms 
[89]. This strategy is primarily adopted to overcome limitations inherent in individual models, such as bias and 
variance issues [91]. Furthermore, it is particularly effective in scenarios characterized by high dimensionality 
and limited data, where the ensemble approach enhances generalization and reduces the risk of overfitting [89]. By 
synergistically leveraging the strengths of multiple algorithms, the ensemble framework significantly enhances 
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the reliability of feature importance rankings. This approach effectively mitigates the the law of ensemble learning 
described in Equation3and leverages the Law of Large Numbers as detailed in Equation4, facilitating a nuanced un-
derstanding of the critical factors influencing UHPC quality.

For a comprehensive exposition of the E-FID framework’s development and operational specifics, readers are 
referred to [6].

3.4.  Informed Evolutionary Multiobjective Feature and Algorithm Selection Framework
In the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [93], used for feature selection, an individual 

(chromosome) x is represented as a binary vector:

x = [x1; x2; … ; xn]                                                                                                                                             (8)

where n is the number of features, and  each xi  ∈  {0; 1} indicates the absence (0) or presence (1) of the i-th 
feature. The fitness of an individual is evaluated through multiple objective functions. Common objectives for fea-
ture selection in complex tasks include maximizing model prediction performance and minimizing the number of 
selected features.

The dominance relation between two individuals x and y in the case of a minimization problem is defined as:

x dominates y if ∀i; fi(x) ≤ fi(y) and ∃j; fj(x) < fj(y)                                                                  (9) 

where fi represents an objective function.

Crowding distance is a measure of the density of the solution space around a given individual, which 
helps maintaining diversity in the population. Crossover and mutation are genetic operators used to create new in-
dividuals [93]. These operators are typically implemented as follows:

•  Crossover combines segments of two parent chromosomes to produce offsprings, introducing genetic diversity 
into the population. A common method used is single-point crossover.

•  Mutation alters genes within a chromosome with a probability Pmut to introduce variability, often imple-
mented as bit-flip mutation.

The algorithm iteratively performs selection, crossover, and mutation to generate new populations. After 
each iteration, both the parent and offspring populations are sorted based on non-dominance and crowding 
distance, preparing them for the next generation cycle [93].

The set of optimal solutions X∗  is defined as [94]:

                                                                              (10)

where l is the number of objectives, X is the set of all possible solutions, and fi  are the objective functions 
to be minimized (or maximized, depending on the problem definition).

In the proposed Informed Non-dominated Sorting Genetic Algorithm II (I-NSGA-II), an individual 
(ind) is represented as a binary vector (see algorithm 1):

X = [xn; hk] = [x1; x2; … ; xn; h1 ; h2; … ; hk];                                                                      (11)

where xi  ∈   {0; 1} indicates the absence (0) or presence (1) of the i-th feature, and hj are hyperparameters 
for the machine learning algorithm. The total number of features is denoted by n, and the number of hyperparame-
ters by k.

A crucial aspect of our algorithm is the incorporation of predefined features based on prior knowledge. 
Let S ⊆ {1; 2; … ; p} represent the set of indices corresponding to these predefined features (see Figure 6). 
During the initialization and mutation phases of the algorithm, these predefined features are enforced by setting xi 
=  1 for each i ∈ S. Mathematically, this enforcement is represented as:

                                                                                                                                       (12)
This approach ensures the inclusion of predefined features in each individual of the population across generations, 
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thereby enhancing the robustness of the feature selection process. However, to introduce a controlled degree 
of variability and to avoid stagnation in local optima, the mutation operation is applied with a probability Pmut, typical-
ly a small value. For predefined features, the mutation probability is effectively reduced or nullified, denoted by 

to minimize the alteration of these features. The mutation step for the i-th feature can thus be expressed as:

                                                                                (13)
where rand(), a function, generates a real-valued random number between 0 and 1.

Algorithm 1 I-NSGA-II:

Require:  D =  {X; y} , where X is the feature matrix, y is the target variable, and N is the number of data 
points. Require:  Predefined features Fpredef with selection probability P\* jc3 \* hps14 \o\al\s\up 5premut

def, 
and Mutation selection probability Pmut.

Require: Population (pop) size Q, Number of generations G, Crossover probability Pc, Mutation 
probability Pm.

1:  function INITIALIZEPOP(Q; F)

2:         for i ← 1 to Q do

3:                 indi ← initialize with Fpredef and random features

4:                  indi ← append random hyperparameters

5:         return pop

6:  function CALCULATEFITNESS(ind; Dtrain)

7:         Xsubset  ← X[Fi]; Fi ← feature subset from ind

8:          Hi ← hyperparameters from ind

9:         Train/Validate model on Xsubset using Hi (CV=10)

10:          fit1   ← model’s R2  score; fit2   ← −count(Fi)

11:          return weighted fitness (2 . fit1 ; 1 . fit2 )
12:  function MUTATE(ind; Pmut; P\* jc3 \* hps14 \o\al\s\up 4premut

def; Fpredef)

13:          for each feature f in ind do
14:                if f ∈ Fpredef and rand() > P\* jc3 \* hps14 \o\al\s\up 4premut

def then

15:                        Keep f unchanged

16:                 else if f ∉ Fpredef and rand() < Pmut then
17:                        Toggle inclusion of f in ind

18:                   else
19:                        Keep f unchanged

20:          for each hyperparameter h in ind do
21:                if rand() < Pmut then

22:                         Adjust hyperparameter h

23:         return ind

24:  function GA(Dtrain; Q; G; Pc; Pm; Pmut; P\* jc3 \* hps14 \o\al\s\up 4premut
def)
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25:          pop ← INITIALIZEPOP(Q;  F)

26:         for g ← 1 to G do

27:                 Assess and assign fitness to each ind ∈ pop using CALCULATEFITNESS(ind; Dtrain)

28:                 offspring ← apply crossover with probability Pc on selected parents; Select parents from pop

29:                Apply mutation with probability Pm on offspring

30:                 for each ind ∈ offspring do

31:                        ind ← MUTATE(ind; Pmut; P\* jc3 \* hps14 \o\al\s\up 5premut
def; Fpredef)

32:                        Ensure compliance with Fpredef
33:                        Recalculate fitness using CALCULATEFITNESS(ind; Dtrain)

34:                 pop ← next generation from pop∪ offspring

35:          Fopt; Hopt  ← best ind in pop based on multiobjective criteria
36:         return Fopt; Hop
37:       for each run r ← 1 to R do       ⊳ LOOCV with different random initialization of the algorithm in 

each iteration.
38:          Dtrain; Dtest ← Split dataset D using LOOCV

39:         F pt ; H pt  ← GA(Dtrain; Q; G; Pc; Pm; Pmut; P\* jc3 \* hps14 \o\al\s\up 4premut
def)

40:         Evaluate F pt ; H pt on Dtest
41:          Record the true and predicted values

Figure 6: Overview of I-NSGA-II Search Space for Feature Selection: I-NSGA-II is designed to explore a constrained search 
space, prioritizing predefined features (X1  to Xp ) with a high likelihood of selection during each individual generation. 
It aims to identify the most significant features (Xp+1  to Xm ) whose interactions with  predefined features greatly impact 

the objectives. This structure limits the search space by integrating prior knowledge into the search space of NSGA-
II, enhancing its performance and ensuring stable solutions by addressing the challenges of multiobjective feature selection, 

especially for high-dimensional data with small sample sizes.

In the mutation operation, if neither condition for mutating predefined (i  ∈  S) nor non-predefined features 
is satisfied – specifically, when rand()   for predefined features and rand()  ≥  Pmut  for others – the 
feature indicator xi  remains unaltered ( ). This otherwise case ensures the integrity of the individual 
by stabilizing the feature composition against unnecessary random perturbations, thereby preserving the current 
selection state for both sets of features and maintaining the evolutionary approach’s balance between exploring the 
solution space and respecting predefined feature sets. This strategic design guides the genetic algorithm towards 
effective solutions that adhere to problem-specific constraints.

In the optimization framework of the I-NSGA-II, emphasis is placed on both maximizing the model’s 
predictive accuracy and minimizing the size of the feature set. Weights are assigned to reflect the relative 
importance of these objectives, with predictive accuracy deemed twice as significant as the simplicity of the 
model. Consequently, the objective formulation is expressed as:
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where f1 (x) = R2(x) represents the model’s predictive accuracy. 

The simplicity criterion,  the model’s complexity by the sum of selected features, 
with each xi indicating the inclusion (1) or exclusion (0) of the i-th feature. This weighting scheme methodical-
ly emphasizes the enhanced priority of accuracy over minimizing feature count, balancing the trade-off between 
high predictive performance and model simplicity.

The general process of the I-NSGA-II is recorded in Algorithm 1. The core of our methodology relies on a data-
set D = {X; y} , where X represents the set of feature values, y is the target variable value, and N is the num-
ber of data points. The algorithm commences with a predefined set of features Fpredef and operates under specific 
operational parameters.

The initialization phase, InitializePop, creates a population of Q individuals, each initialized with the 
prede- fined feature set Fpredef and a random selection of additional features, augmented by randomly chosen hyper-
parameters. The fitness of each individual is assessed in the CalculateFitness function. This function extracts a 
feature subset Fi and hyperparameters Hi  from each individual, trains a model on Xsubset  using Hi, and cal-
culates fitness based on model accuracy and the count of features used. The dual objectives are to achieve high 
accuracy and minimize the feature set, while also respecting the constraints imposed by predefined features.

Mutation, handled by the Mutate function, toggles the inclusion of features in an individual based on Pmut, pro-
vided the features are not part of Fpredef. The genetic algorithm (GA), detailed in the GA function, iteratively 
performs the following steps: evaluates the population, selects parents, and applies crossover and mutation according 
to Pc and Pm. Offsprings undergo mutation, compliance adjustment to ensure adherence to predefined feature con-
straints, and fitness recalculation to update their fitness values based on the new feature set and hyperparameters. After 
G generations, the algorithm selects the best individual based on the optimized feature subset Fopt  and hyperparam-
eters Hopt.

In the nested validation and evaluation loop, a single test data point is extracted at the start of the IEM-
FAS framework using the LOOCV mechanism for the final test phase. Then, for training and validation of each 
algorithm and finding the optimal features and hyperparameters in the I-NSGA-II algorithm, 10-fold CV is used 
on the training data from LOOCV. After finalizing the model and identifying the optimal features and hyperpa-
rameters, the model is evaluated using the unseen data points from LOOCV. These steps are repeated across 
LOOCV with different initializations for each fold, and the average prediction performance and frequency of 
selection of each feature are recorded.

3.4.1.  Parameter Optimization for I-NSGA-II

To configure and run the I-NSGA-II algorithm optimally, we conducted a series of trial-and-error experiments 
to determine the most effective parameter values. The parameters include a mutation selection probability Pmut  = 
0:05, a population size Q  =  100, a number of generations G  =  100, a crossover probability Pc    =  0:9, and a 
mutation probability Pm  = 0:2.

The objective function, also known as the fitness function, consists of two objectives: prediction accuracy and 
the number of features. To reflect the importance of prediction accuracy over the number of features, the fitness 
function assigns a weight of 2 to prediction accuracy and a weight of 1 to the number of features. The prediction 
accuracy is

calculated using the R2  metric, chosen after evaluating several metrics including MAE, RMSE, R\* jc3 \* hps14 
\o\al\s\up 32adj, and R2 .

The search space for feature selection in I-NSGA-II consists of 16 possible bits. Of these, 6 bits are allocated 
for predefined features and 6 bits for other features, allowing 4 features to be potentially removed from the 
pool of 16 features in each run. These configurations are also derived from trial-and-error experiments aimed at 
achieving the best performance.
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3.4.2.  Machine Learning Algorithms

Within the IEM-FAS framework (see Figure 2), the feature selection methodology employs a comprehensive 
set of 10 different machine learning algorithms, ranging from parametric and non-parametric methods, including 
simple linear, advanced ensemble, and Bayesian approaches. The specific algorithms used are Multiple Linear Re-
gression (MLR) [95], Partial Least Squares (PLS) [95, 96], Kernel Ridge Regression (KRR) [95, 97], K-Nearest 
Neighbors (KNN) [95, 98], Support Vector Regression (SVR) [95, 99], Decision Tree (DT) [95, 100], Ran-
dom Forest (RF) [95, 101], Gradient Boosting  (GB)  [95, 102],  Extreme  Gradient Boosting  (XGB)  [103],  
and  Gaussian  Process Regression (GPR) [95, 104]. The selected machine learning algorithms are commonly 
used in industry prediction applications [105], particularly for predicting the mechanical properties of concrete.

3.4.3.  Evaluation Metrics of Models Performance

In the process of evaluating the performance of trained models within the testing phase, a comprehensive approach is 
adopted, utilizing different evaluation metrics tailored specifically for regression tasks. The R2  metric provides a mea-
sure of how well variations regarding the average of output in the observed outcomes are explained by the model:

                                                                                                                             (15)

The  adjusts the R2  statistic based on the number of predictors in the model, preventing overestimation of the

model’s explanatory power when more predictors are added:

                                                                                                              (16)

where D is the number of predictors. The  thus accounts for the model’s complexity and is always lower than or 
equal to R2 .

The MAE (Mean Absolute Error) measures the average magnitude of the errors in a set of predictions, without 
considering their direction:

                                                                                                                            (17)

TheMAPE (Mean Absolute Percentage Error) expresses the error as a percentage of the observed values, providing a 
simple interpretation of the error magnitude:

                                                                                                                  (18)

TheRMSE (Root Mean Squared Error) is a quadratic scoring rule that measures the average magnitude of the error.

It is calculated as the square root of the average squared differences between the predictions and actual observa-
tions:  

                                                                                                                   (19)

In all metrics, yi represents the observed values, i the predicted values, y the mean of the observed values, and N 
the number of observations.

3.5.  UHPC Manufacturing Process Modeling
Building on the ranked features and the best algorithm (with its optimal hyperparameter configuration) proposed 

by the IEM-FAS framework (see Figure 2), this section outlines a streamlined modeling phase, as detailed in Al-
gorithm 2. The methodology employs the proposed algorithm with LOOCV, beginning with data loading and 
normalization. The approach incrementally introduces features based on their importance ranking determined by 
the E-FID and the IEM-FAS frameworks, preparing them alongside the target variable for analysis.
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Algorithm 2 UHPC Production Process Modeling

1:  function PREPAREDATA(data, features, target)

2:         X ← data[features]

3:         y ← data[target]

4:          Normalize X to have values between 0 and 1

5:         return X, y

6:  function LOOCV(X, y)
7:         Initialize predictions as empty list

8:         for each split in LOOCV of X, y do

9:                Train model on the training set

10:                 predictions ← Predict on the test set and save it

11:          return average of the MAE, R2 ; 

12:  function MAIN

13:          data ← A dataset with X ∈ RN×D  and Y ∈ RN×1

14:         Define features, target

15:         for i ← 1 to length(features) do

16:                 currentFeatures ← features[1 : i]

17:                X, y ← PREPAREDATA(data, currentFeatures, target)

18:                avgMAE, avgR
2 ; avg  ← LOOCV(X, y)

The model is trained and evaluated iteratively, using each data point as a test case while the remaining data points 
serve as the training set. During this process, features are systematically added according to their importance to assess 
their cumulative impact on the model’s performance. The performance metrics, R2 , , and MAE, are calculat-
ed based on predictions made on the test data. This approach allows for an effective evaluation of the model’s pre-
dictive accuracy and provides insight into the impact of each feature as recommended by the IEM-FAS framework.

4.  Results and Discussions

4.1.  Assessing Data Preprocessing

4.1.1.   Correlation Patterns in Studied Factors and UHPC Mechanical Properties

In the preprocessing phase of this study, based on the results of the Screening Phase [6], which led to the 
removal of three features (Cement Reactivity, Mixing Speed, and Mixing Duration), 19 factors from an initial 
pool of 22 (Table 1) were selected for further analysis based on their relevance to the final quality of UHPC.
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Table 1: This dataset [67] includes a primary Ultra-High Performance Concrete (UHPC) recipe, highlighting 
variations in material quality, potential measurement errors in the primary recipe, mixing conditions, fresh 

concrete characteristics, and curing conditions. The cement and silica fume content are fixed across all 
experiments in this study.

To refine the dataset and reduce dimensionality, correlations among the factors were examined using the Pearson 
correlation method. The correlation analysis, illustrated in the heatmap presented in Figure 7, identified 
strong correlations among certain pairs of variables: SAI and SAII (Sand Type I and II), FLI and FLII (Filler 
Type I and II), and IT and FCT (Ingredient Temperature and Fresh Concrete Temperature). Due to the high cor-
relations, SAII, FLII, and FCT were removed to avoid factor redundancy. This decision led to a reduction of the 
factor pool to 16.

Subsequent correlation analysis between the refined set of input factors and key outputs, specifically Compressive 
Strength at day 28 (CS28) and Flexural Strength at day 28 (FS28), revealed significant relationships. This anal-
ysis highlighted the impact of curing temperature during the second stage (CT28) on both mechanical properties 
of the final UHPC product. Notably, the conditions under which specimens were cured – whether submerged un-
derwater or encased in air within a plastic film from day 2 to day 28 (CC28) – were determined to critically affect 
FS28.

This highlights the importance of maintaining a continuously wet surface on UHPC during the curing process. 
Due to its high binder content (cement and silica fume) and low water content, UHPC does not contain enough 
water to fully hydrate all the binders. As a result, it is essential to compensate for this water deficit by absorbing 
moisture from the environment.
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Figure  7:  Pearson  Correlation  Coefficients  for  Variables  in  UHPC  Production:  This  heatmap  outlines  the  
correlations between material composition, processing  parameters, and environmental factors, as well as their 

correlations with the compressive ( CS28 ) and flexural (FS28 ) strengths of UHPC at day 28 of curing. For a detailed 
explanation of the variables used in this heatmap, see Table 1.

4.1.2.  Outlier Detection by HIE-OD

Figure 8 illustrates the distribution of the outputs (CS28 and FS28) using box, histogram, and scatter plots. 
The box and histogram plots suggest the presence of two potential outliers. As discussed in Section 3.2.2, and 
further evidenced by the scatter plots in Figure 8, these data points do not provide a clear basis for assessment using 
clustering and distance-based perspectives commonly applied in outlier detection.

During the first stage of outlier detection, the two potential outliers identified from the box and histogram 
plots were examined and confirmed as true outliers by domain experts. Additionally, one data point, which exhib-
ited some missing values in fresh concrete characteristics and outputs, was also identified as problematic. Conse-
quently, these three data points were removed from the initial dataset of 150 data points, reducing the dataset to 147 
data points.

The results from the HIE-OD method are detailed in Table 2. This table provides a comprehensive summary 
of votes from an ensemble of 10 BLs for the detected experiments, indicating that the experiments listed were iden-
tified as possible outliers by at least one BL. Experiments not listed in the table were not detected as possible outliers 
by any of the 10 BL.

The criterion for outlier detection by each BL was set to exceed an informed threshold of θ = 15 MPa in residu-
als. The criterion for outlier detection by the informed ensemble-based part was established using majority voting, 
with a benchmark of six or more votes required for potential outlier identification. This threshold is depicted in 
Table 2with red rectangles for easy reference. The experiments marked with red rectangles – numbers 4, 16, 29, 
44, 54, 96, 98, and 144 – were identified by the informed ensemble-based part as potential outliers. This threshold 
of six votes was strategically chosen to balance the need for sensitivity in detecting outliers against the risk of false 
positives.

Remarkably, each data point identified as an outlier by the informed ensemble part of the HIE-OD method, using 
the majority voting criterion, underwent subsequent examination by domain experts. This review process validated 
the ensemble method’s recommendations, with all highlighted experiments being confirmed as true outliers.

Following expert validation, all eight data points recommended as outliers were removed from the dataset. This 
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action reduced the dataset to a total of N = 139 data points.

Figure 8: Distribution of Compressive Strength (CS28 ) and Flexural Strength (FS28 ) at Day 28 Using Box, 
Histogram, and Scatter Plots: The box and scatter plots reveal one possible outlier in both outputs, while the 

histograms suggest two possible outliers, especially for CS28.

Table 2: Summary of detection outcomes from 10 base learners on data points identified as containing 
potential outliers, with red rectangles highlighting experiments receiving six or more votes indicating a 

consensus on outlier status. All flagged data points were validated by domain experts. (BL: Base Learner, 
Exp.: Experiment)

4.2.  Gaining Insights into Feature Importance for UHPC Mechanical Properties Using 
E-FID

The feature importance analysis for CS28 (Figure9) highlights the paramount importance of Curing Temperature 
from day 2 to 28 (CT28), underscoring the critical role that environmental conditions play during the second 
phase of the curing process. Interestingly, the Initial Curing Temperature (CT1) on the first day of curing also 
emerged as a significant factor, albeit with less influence than CT28. This suggests that the curing conditions 
on the first day establish a significant foundational strength, which is further enhanced by the curing conditions 
from day 2 to day 28. This confirms the well-known fact that higher temperatures accelerate cement hydration. 
However, it is equally important not to overlook the need for sufficient moisture in such environments.

Ingredient Moisture (IM) shows a crucial impact on the final compressive strength of the UHPC, highlighting 
the importance of moisture content within the mix. Similarly, Average Power Consumption (APW), while not a con-
trollable factor, serves as an informative indicator, reflecting the rheology of concrete paste (energy input) during 
the mixing process and helping to predict the final compressive strength. The addition of Graphite (GRP) (to simu-
late the impurity in silica fume) and of the Curing Conditions from day 2 to day 28 (CC28) also play notable roles 
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in the analysis. The presence of carbon (Graphite) as an impurity in silica fume significantly absorbs water in 
the mixture, leading to a reduction in flowability. This is a critical factor, especially in UHPC, which has a very 
low water content.

For FS28, as detailed in Figure 9, the dominance of curing temperature from day 2 to day 28 (CT28) remains 
unchallenged, reinforcing the overarching influence of the curing processes. However, in a notable departure from 
the findings related to compressive strength, the curing condition from day 2 to day 28 (CC28) stands out as the second 
most critical factor for flexural strength as well. This distinction highlights the different impact of environmental 
conditions on the material’s resistance to bending stresses.

Ingredient Moisture (IM) and initial Curing Temperature (CT1) retain their significance, reflecting a consis-
tent theme across both strength characteristics regarding the importance of moisture and initial curing conditions. 
Notably, Air Content (AC), measured after the mixing step in fresh concrete, emerges as a more informative factor 
for predicting FS28 compared to CS28. This indicates its role in affecting the material’s flexural properties, likely 
through its influence on the pore structure and distribution within the concrete matrix. The comparative analysis of 
CS28 and FS28 results from the E-FID framework reveals a nuanced landscape of feature importance, with several 
key takeaways:

•  Curing Conditions’ Primacy: The curing temperature at various stages unequivocally influences both compres- 
sive and flexural strength, emphasizing the need for controlled environmental conditions throughout the curing 
process.

•  Differential Impact of Factors: Certain factors, such as CC28 and AC, exhibit a varied influence on CS28 versus 
FS28. AC, particularly, serves as an informative indicator rather than a direct influencing factor, highlighting its 
role in affecting the material’s flexural properties through its influence on the pore structure and distribution.

However, this aspect needs further study, as the presence of carbon is expected to influence compressive strength sim-
ilarly to flexural strength.

•  Importance of moisture and energy consumption of the mixer: The consistent significance of Ingredient Mois-
ture (IM) across both analyses underscores the fundamental role of ingredient quality in determining UH-
PC’s mechanical properties. This further emphasizes the necessity of maintaining adequate moisture levels to ensure 
proper binder hydration and optimal performance. Simultaneously, APW, as an informative indicator of mixing 
efficiency, aids in predicting UHPC’s strength outcomes rather than directly influencing them.

4.3.  Enhanced Predictive Modeling of UHPC Mechanical Properties Using I-NSGA-II

4.3.1. Impact of I-NSGA-II on Model Performance and Algorithm Selection

This study presents a comprehensive evaluation of various machine learning algorithms for predicting the CS28 and 
FS28 of the UHPC. In the IEM-FAS framework, each algorithm is trained and tested using the LOOCV approach, 
with different random initializations in each fold. The entire process employs both I-NSGA-II and NSGA-II for 
both outputs. After training, the performance of each model is tested using the test dataset based on several metrics: R2 , 
MAE, MAPE, and RMSE. The results from the average of all folds in the LOOCV loop during the test step are sum-
marized in Table 3afor CS28 and in Table 3bfor FS28.

In Table 3a, models employing the I-NSGA-II demonstrated substantial improvements in R2  values. For in-
stance, the MLR model experienced an increase from 72.47 % under traditional Feature Selection (FS) using 
NSGA-II to 76.37 % with Informed Feature Selection (I-FS) using I-NSGA-II. This improvement indicates a more 
robust model fit, which can be attributed to the effective integration of domain-specific knowledge within the fea-
ture selection process. Moreover, reductions in MAE, MAPE, and RMSE across models further validate the effica-
cy of I-NSGA-II. KRR and GB also exhibited significant improvements with the application ofI-NSGA-II. Notably, 
KRR demonstrated an increase in R2 from 62.38 % to 76.26 %, marking one of the highest improvements observed. 
This enhancement is accompanied by a notable decrease in RMSE from 7.33 to 5.66, underscoring the effectiveness 
of I-NSGA-II in reducing prediction errors.

In the context of flexural strength (FS28), the SVR model demonstrated the most substantial gains with I-NSGA- 
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II, as detailed in Table 3b. The R2  value surged from 72.62 % under NSGA-II (FS) to 81.75 % under I-NS-
GA-II (I-FS), highlighting a significant enhancement in the model’s ability to capture the variability in flexural 
strength data. Moreover, the MAE reduced dramatically from 1.56 MPa to 0.93 MPa, indicating a higher accu-
racy in the model’s predictive performance. Similarly, the MAPE and RMSE mirrored this trend, improving from 
8.54 % to 7.08 % and from 2.04 to 1.37, respectively. GPR also showed improved performance metrics with 
the application of I-NSGA-II (FS). The R2 value increased from 72.67 % to 81.70 %, and there were significant 
reductions in both MAE, MAPE, and RMSE, reinforcing the effectiveness ofI-NSGA-II in enhancing the predictive 
accuracy of complex regression models.

In summary, the application of I-NSGA-II across various machine learning models consistently outperforms 
the traditional NSGA-II method in all assessed metrics for both compressive and flexural strengths after 28 days (Ta-
ble 3). This comprehensive analysis conclusively demonstrates the superior predictive capabilities ofthe I-NSGA-II 
approach, establishing its efficacy in enhancing model performance. Notably, for compressive strength (CS28), 
the MLR model exhibits the most notable enhancement, emerging as the optimal model. Similarly, for flexural 
strength (FS28), the SVR model stands out with the most substantial improvements in all key performance in-
dicators, marking it as the best-performing model under the I-NSGA-II framework. Conversely, for both outputs, 
the DT model demonstrates the lowest performance, illustrating the weakness of this algorithm in capturing the 
patterns effectively.

Table 3: Comparative analysis of modeling performance for compressive strength after 28 days (CS28) and 
flexural strength after 28 days (FS28 ) using informed feature selection with I-NSGA-II (I-FS) and normal 
feature selection with NSGA-II (FS). The tables display performance metrics such as R2 , Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) for various 
machine learning models.
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4.3.2. Impact of I-NSGA-II on Model Interpretability, Solution Stability, and Feature Selection

The results illustrated in Figures10and11demonstrate the impact of incorporating predefined feature importanc-
es on model interpretability within feature selection algorithms. Data from two experimental setups – one 
utilizing predefined feature importances through I-NSGA-II and the other without, using standard NSGA-II – were 
collected and analyzed. Each setup involved 139 LOOCV runs across various models, with feature selection fre-
quencies recorded for each model, as discussed in Section 4.3.1.

Figure 10a demonstrates that the first six features, defined a priori as critical (I-NSGA-II), are invariably se-
lected with the highest frequency (139 times) across all model evaluations. In contrast, under the NSGA-II scenario, 
depicted in Figure 10b, which lacks predefined feature guidance, the same six features also emerge as the most 
frequently selected. This consistent trend underscores the accuracy of the initial feature importance assessment by 
the E-FID method. Such parallelism in results validates the initial assumption about the critical nature of these 
features, thus supporting the effectiveness of informed feature preselection in I-NSGA-II.

A notable divergence between the I-NSGA-II and the standard NSGA-II is observed in the stability of fea-
ture selection. I-NSGA-II consistently identifies the predefined features in every model iteration, reflecting 
enhanced stability and reliability in feature selection. This consistency is absent in the NSGA-II approach, where 
feature selection exhibits higher variability. This indicates potential instability and unpredictability in model 
performance without the injection of prior knowledge, which is a critical point of view for evaluating every al-
gorithm.

Moreover, additional features such as Sand Type I (SAI), Ingredient Temperature (IT), and Material Delivery Batch 
Time (DB) exhibit significantly higher selection frequencies in the I-NSGA-II models. This observation suggests 
that the algorithm not only reinforces the importance of predefined features but also effectively identifies and elevates 
other relevant features based on the dataset’s intrinsic characteristics.

Conversely, features such as Superplasticizer (SPP) and Initial Curing Conditions (CC1), which exhibit low 
or zero selection frequencies in some models under I-NSGA-II, highlight the algorithm’s capacity to depriori-
tize less impactful features.
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Figure 10: Comparative Analysis of Feature Selection Frequencies in I-NSGA-II and NSGA-II for  CS28 
:  It highlights the increased stability and efficacy of feature selection when domain-specific knowledge 
is incorporated via  I-NSGA-II. The comparison of the results demonstrates the reliability of E-FID for 

integrating priors into  I-NSGA-II.  For details about the variables, refer to Table 1.  (I-NSGA-II:  Informed  
Non-Dominated  Sorting Genetic Algorithm II,  CS28 :  Compressive Strength at Day 28)

This selective enhancement by I-NSGA-II not only augments the model’s interpretability but also clearly delin-
eates which features are consistently valuable. It takes into account the interactions with predefined features 
to boost prediction performance while simultaneously preserving model simplicity and ensuring stability in the 
solutions.

In case ofFS28, the analysis presented in Figure11reveals distinct differences in feature selection patterns between 
the two testing scenarios. In the I-NSGA-II scenario (Figure 11a), features such as Curing Temperature from day 2 
to day 28 (CT28), Curing Conditions from day 2 to day 28 (CC28), Ingredient Moisture (IM), Initial Curing Tem-
perature (CT1), Air Content (AC), and Material Delivery Batch Time (DB) show maximum selection frequen-
cy (139 times) across all models. This uniformity indicates that these features are consistently deemed crucial 
when predefined importances are considered, suggesting a strong alignment with the predefined importances 
and highlighting the influence of domain knowledge in guiding the selection process.

Conversely, the NSGA-II scenario (Figure 11b) demonstrates more variability in feature selection. Features such 
as IM, CT1, AC, and DB, while still frequently selected, show reduced counts compared to the I-NSGA-II scenario.

Additionally, the interaction assessed by I-NSGA-II reveals that Average Power Consumption (APW), al-
though significant in the NSGA-II scenario, is less emphasized in I-NSGA-II due to the more critical 
interactions with predefined features. Conversely, the importance of Graphite (GRP) and especially Electrical Con-
ductivity (EC) appears less crucial by NSGA-II but shows relatively good interactions with predefined features by 
I-NSGA-II.

Furthermore, interesting results emerge from the comparison of both scenarios – using I-NSGA-II and NS-
GA-II
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– as illustrated in Figures 10 and 11 for both CS28 and FS28. Notably, I-NSGA-II sets the frequency of 
selection for some factors to zero in many cases. By comparing both scenarios, it can be concluded that I-NS-
GA-II tends to definitively decide whether a feature is selected or not, which leads to more stable solutions, 
higher accuracy in prediction performance, and better interpretability for use cases.

As discussed in Section 4.3.1, the selected algorithm for CS28 is MLR and for FS28 is SVR when em-
ploying I-NSGA-II, due to their superior prediction accuracy. From Figure 10, the MLR model selects features 
CT28, CT1, IM, APW, GRP, CC28, SAI, IT, EC, FR, and FLI for their critical importance in the subsequent inves-
tigation phase of the modeling process. Similarly, for SVR, as illustrated in Figure 11, the features CT28, CT1, IM, 
APW, GRP, CC28, SAI, IT, DB, SPP, SF, FR, FLI, and EC are selected for the next phase of investigation due to 
their pivotal roles.

Figure 11: Comparative Analysis of Feature Selection Frequencies in the Models Using I-NSGA-II versus 
NSGA-II for FS28 : These heatmaps highlight the impact of incorporating predefined feature importances on 
the stability and reliability of the feature selection process. The variables are explained in Table 1. (I-NSGA-II: 

Informed Non-Dominated Sorting Genetic Algorithm II, FS28 : Flexural Strength at Day 28)

4.4.  UHPC Manufacturing Process Modeling
The IEM-FAS framework identified the MLR algorithm as the optimal choice for predicting CS28. As illus-

trated in Table 3a and Figure 10, a set of 11 critical features were selected to enhance the accuracy of the MLR 
model. In contrast, for predicting FS28, the framework recommended the SVR algorithm, supported by a dis-
tinct pool of 14 significant features (Table 3b, Figure 11).

The modeling process (Algorithm 2) for CS28 commenced with the inclusion of the most influential factor, 
CT28.

Utilizing CT28 as a solitary predictor yielded an R2  value of 57.10 %, demonstrating the substantial role of 
curing temperature in explaining the variance of CS28. Subsequently, incorporating the first 24 hours of curing 
temperature (CT1) led to a significant enhancement in model performance, increasing R2  to 66.61 %. This improve-
ment suggests that CT1 provides additional variance information not captured by CT28. The further inclusion of 
the impact factor (IM) elevated the R2  to 70.53 %, indicating its critical contribution to the predictive model. 
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The addition of (APW) resulted in a slight performance boost, with R2 increasing to 71.16 %. Incorporating (GRP) 
and (CC28) further refined the model, yielding a notable R2  improvement to 75.40 %. Although the inclusion of 
additional features such as SAI and IT only marginally increased R2  to 75.77 %, these features were retained based 
on domain expertise, recognizing their potential significance in practical scenarios. Ultimately, the model achieved 
its highest adjusted R2 of 74.28 % with a core subset of six predictors: CT28, CT1, IM, APW, GRP, and CC28. This 
subset represents a balance between model accuracy and computational efficiency, highlighting the key variables 
necessary for optimal CS28 prediction.

In the modeling of FS28, the process began with the inclusion of CT28, which yielded an initial average R2  
of 46.23 %, indicating the significant impact of temperature on flexural strength at day 28. The subsequent inclu-
sion of CC28 substantially improved the model’s performance, raising the average R2  to 74.32 %. This notable 
improvement underscores the importance of the interaction between curing conditions after 24 hours until day 28 in 
predicting FS28. However, the introduction of additional variables such as IM, CT1, and AC led to fluctuations 
in model accuracy. Specifically, the incorporation of IM slightly decreased the average R2 to 74.02 %, while CT1 
and AC further reduced it to 72.56 % and 71.51 %, respectively. These variations suggest that while some fea-
tures introduce valuable new information, others may contribute to model complexity without a corresponding 
increase in predictive power. The highest average R2 of 78.89 % was achieved with a specific combination of fea-
tures, including DB and IT, highlighting their importance in enhancing model accuracy.

These findings (Figure 12) emphasize the critical role of curing conditions in optimizing the mechanical proper-
ties of UHPC. Moreover, factors such as delivery batch timing and raw material storage conditions, which affect 
material moisture and temperature, significantly influence the quality of UHPC. Additionally, measurement 
errors in key materials, such as sand and impurities in silica fume (simulated as Graphite content), have a sub-
stantial impact on UHPC performance.

Figure 12: Comparative Performance Evaluation of MLR (Multiple Linear Regression) and SVR (Support 
Vector Regression) in the Test Phase: This figure highlights the impact of adding features on the prediction 
metrics for Compressive Strength at day 28 ( CS28 ) and Flexural Strength at day 28 (FS28). The variables 

are explained in Table 1.

The proposed modeling strategy offers a robust approach to improving UHPC quality, particularly in the 
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event of production faults. By enabling real-time prediction of mechanical properties, this strategy allows for 
prompt adjustments to the UHPC mixture to ensure target performance values are met. If predictions indicate 
that the mixture will not achieve the desired properties, corrective actions can be taken in two primary ways:

•  Modifying the fresh mix based on the identified importance of each parameter, followed by additional 
mixing and re-evaluation of the predicted outcomes.

•  Adjusting the curing regime, including conditions and temperature, to further enhance the mechanical 
properties of the UHPC.

5.  Conclusions and Future Work
This study presents an Informed Automatic Modeling Pipeline, spanning from the Design of Experiments 

to the modeling phase, aimed at predicting the mechanical properties of UHPC in real-time. By adopting a 
holistic approach to UHPC manufacturing, the pipeline addresses the challenge of replicating UHPC products 
with consistent mechanical properties using the  same recipe,  despite  inherent uncertainties in the production 
process. This comprehensive perspective on UHPC manufacturing and its impact on mechanical properties is, 
to the authors’ knowledge, uniquely addressed in this work. The research contributes to a larger project aimed 
at developing a self-healing production system for the construction industry, capable of continuously moni-
toring UHPC quality and recommending real-time corrective actions.

Dueto the lack of datasets with a holistic view of the UHPC manufacturing process, 150 experiments were 
designed and conducted at the laboratory of G.tecz Engineering GmbH. The limited number of experiments, 
coupled with the complex nature of the manufacturing process, resulted in data sparsity. To mitigate this chal-
lenge, the study emphasizes dimensionality reduction and feature selection for modeling UHPC’s mechanical 
properties.

A key contribution of this research is addressing the significant challenges associated with MOFS in high- 
dimensional contexts. These challenges include an exponentially expanding search space, ambiguity in iden-
tifying optimal interactions in complex and sparse datasets, and conflicts among objectives. The development 
ofthe I-NSGA- II, which incorporates insights from the E-FID framework into the traditional NSGA-II algo-
rithm, effectively addresses these issues. The I-NSGA-II not only overcomes the instability typically asso-
ciated with MOFS in high-dimensional, limited-sample scenarios but also enhances the interpretability and 
stability of feature selection.

The findings demonstrate that the I-NSGA-II outperforms the standard NSGA-II in two critical aspects. 
First, it achieves superior prediction performance. Second, it improves the interpretability of the models and 
the consistency of the feature selection process. Specifically, I-NSGA-II stabilizes feature selection frequen-
cy, either consistently selecting or excluding features across all iterations, in contrast to the considerable vari-
ability observed with NSGA-II.

The analysis revealed that curing temperature and curing humidity are the most critical factors influencing 
UHPC quality. Additional key parameters include sand (in terms of content and particle size distribution), 
graphite content (as an impurity in silica fume), and the moisture and temperature conditions during raw ma-
terial storage. These findings highlight the necessity of careful control over these variables to improve UHPC 
quality.

The proposed modeling strategy can significantly improve UHPC quality control by addressing potential 
production faults and enabling real-time prediction of mechanical properties. This allows mixer operators to 
assess whether the UHPC mixture will meet the target specifications.

While the results are promising, this study is limited to datasets concerning the compressive and flexural 
strength of UHPC. Future research should explore a broader range of datasets to validate and refine the pro-
posed methodologies in real-world UHPC manufacturing settings. Addressing these aspects will enable the 
developed framework to contribute more comprehensively to the field of concrete production, ensuring high-
er quality and performance across various concrete types.
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Research  dataset  (generated  by  the Welch  test  function  [9, 10])  will  be  made  available  upon  re-

quest.  Our experimental datasets, supplied by our industry project partner, contains sensitive and confidential 
information and, therefore, cannot be publicly disclosed.
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Appendix: Evaluation ofI-NSGA-II on Data Generated by the Welch Test 
Function

The Welch test function, characterized by its complex interactions and nonlinear effects, serves as a benchmark for 
evaluating optimization algorithms [9,10]. The function y is defined as follows:

where the input domain is xi  ∈ [-0:5; 0:5] for i = 1; … ; 20. From the Welch function (Equation 20), it is evi-
dent that inputs x1, x4, x5, x12, x13, x19 , and x20  are the most significant features.

To assess the performance ofthe I-NSGA-II algorithm on data generated by the Welch test function (X ∈ 
R250×20), the most significant features were identified using the E-FID framework (x4 , x12 , x13 , x19 , x20) and 
incorporated as prior knowledge into the IEM-FAS framework. The optimization process was conducted using 
advanced machine learning algorithms, and the results comparing I-NSGA-II with the classical NSGA-II are 
presented in Table 4 and Figure 14. The results show that I-NSGA-II outperforms classical NSGA-II in two key 
aspects: prediction accuracy and solution stability.

As demonstrated in Table 4, the I-NSGA-II significantly enhances the prediction accuracy of models. For instance, 
the SVR model’s R2 value improved from 66.74 % with NSGA-II to 81.62 % with I-NSGA-II. Regarding the sta-
bility of solutions across different algorithm initializations and data partitioning, Figure 14aillustrates the frequen-
cy of feature selection by I-NSGA-II, while Figure 14b shows the selection frequency using classical NSGA-II 
over 250 iterations in a LOOCV strategy. The results indicate that I-NSGA-II tends to produce more stable solutions 
compared to classical NSGA-II. For example, in both MLR and SVR models, the importance of features x1 and 
x5 is more pronounced when using I-NSGA-II. These features are also crucial according to the Welch function 
(Equation 20), demonstrating that I-NSGA-II is more likely to identify significant features with strong interac-
tions with predefined features compared to classical NSGA-II.

Table 4: Comparative  analysis  of  modeling  performance  on  data  generated  by  the  Welch  test  function  
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using  informed  feature selection with I-NSGA-II (I-FS) and normal feature selection with NSGA-II (FS). 
The table displays performance metrics such as R2 , Mean Absolute Error (MAE), and Root Mean Square 

Error (RMSE) for various machine learning models.

Models Abb.

R2  in % MAE in MPa RMSE in MPa

I-FS          FSI-FS FS I-FS FS
Multiple Linear Regression MLR 84.15 78.88 0.6959 0.7973 0.8481     0.9789

Kernel Ridge Regression KRR 81.98 74.08 0.7255 0.8651 0.9042     1.0845
Support Vector Regression SVR 81.62 66.74 0.7163 0.9329 0.9132     1.2284

Decision Tree DT 49.85 46.76 1.1592 1.1833 1.5085     1.5542
Random Forest RF 71.01 68.81 0.8814 0.9016 1.1470     1.1896
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