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Abstract
This current research work combines both experimental and theoretical study of the impact of cement 
mortar reinforced with  recycled  polyethylene  for  applications  in  the  tropical  regions.  The  work  ex-
plores  incorporating  low  density polyethylene (LDPE) waste into cement mortar to improve its frac-
ture toughness and flexural strength with balanced compressive strength. Different volume fractions (0, 
5, 10, 15, 20, 30, and 40 %) of the powdered LDPE were mixed with cement and the density, com-
pressive strength, flexural strength, and the fracture toughness were observed under different testing 
conditions. All specimens were tested after curing of 7, 14, and 28 days.   The results show that there 
was ~6 % increase in the fracture toughness at 5 vol. %, ~7 % increase at 10 vol. %, and 24 vol. % in-
creases at 20 vol. % of LDPE. Also, it was observed that the weight and compressive strength decreased 
with increasing volume fraction up to 40 vol. % of LDPE waste. The results for the survival/failure prob-
ability show that the PE-mortar composites with PE volume percentages up to 20 vol. % had the highest 
survival probability. The composite with this volume percentage can withstand crackup to 7 mm, with a 
survival probability of 0.6.

ing; Crack opening tip displacement
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1 Introduction
The collapse of buildings poses major challenges and threats to the health and wellbeing of the human 

race worldwide. Over time, major damages have been reported resulting in expansive loss of huge invest-
ments in housing and properties (Blunden 2016), with many people losing their lives. In most cases, people 
have sleepless nights and state of unrest. The world is, however, relatively unstable as a result of the geo-
metrical order of population growth, urban development in coastal areas, poor planning and housing devel-
opments in high risk areas of cities (Davy 2009).

Furthermore, researchers and engineers throughout West Africa have shown that building collapses oc-
curs to a diversity of factors (Opara 2007). Some of these  factors include but not limited to employment 
of incompetent artisans (Opara 2007; Michael and Razak 2013), weak work supervision of workmen at 
building sites, endemic poor work ethics and non-enforcement of existing laws (Opara 2007; Michael and 
Razak 2013). Research carried out by Michael and Razak (2013) showed that cases of building collapse 
are not restricted by climatology or level of urbanization since these cut across cultural and ethnical bar-
riers. Additionally, other main causes and major challenges have being attributed to non-compliance with 
specifications standards a well as using of sub-standard building materials  and equipment  (Yilidirim and  
Sengul 2011; Siegel et al. 2013). In line with this non-compliance or use of sub-standard material, the type 
and quality  of  cement  used  in  concrete   structures  plays   a   significant  role  in  building  and construc-
tions. Furthermore, concrete ability to withstand certain loads has significant impact on its durability. There 
is, therefore a need to investigate the quality of materials used in making the concrete for construction in 
the Africa and the world at large (Siegel et al. 2013).

Globally, Cements often used as binders are very expensive for the construction of modern buildings.  
This binder is not environmental friendly and therefore, there is the need to substitute whole or part of this 
polluting cement with materials that can be recycled. Recently, a couple ofworks have been carried out 
to fully or partially replace industrial cement with several natural and artificial wastes (Tonoli et al. 2007; 
Setién et al. 2009; TerzietĆ al. 2013; Bouasker et al. 2014; Gesoğlu et al., 2014; Mustapha et al. 2015; Aze-
ko et al. 2016a; Azeko et al. 2016b; Mustapha et al. 2016;  Azeko  et  al.  2018)  for  composite  processing  
in  building  applications.  These  recycled materials including polyethylene (Azeko et al. 2016a) and nat-
ural straws (Mustapha et al. 2015) in cement  have  shown  to  possess  excellent  compressive  strengths,  
flexural  strengths,  fracture toughness, and erosion resistance that are comparable to cement-based struc-
tures produced from sea/river sand.

Although  these  research  methods  have  greatly  influenced  the  mechanical   and  physical properties 
of reinforced bricks/blocks, there is still the need to provide more insight into the solving of cracking and 
failure associated problems in the building and construction industries. This work therefore  recycled  waste  
polyethylene  into  pellets  and  mixed  with  cement  mortar  to  produce polyethylene-cement composites 
in different proportions for sustainable building applications.

2  Modelling

2.1 Modeling of Brittle Fracture

Assuming linear elastic fracture mechanics (LEFM) conditions are applicable in polymer- reinforced 
composites, the stress distribution, σij   ahead  of a  crack that is dominant and causes failure in these 
composites could be estimated from (Azeko et al. 2016b):

（1）
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where KI  is the stress intensity factor, while r and θ are the polar coordinates from the crack-tip, and f(θ) 
depends on the mode of loading (Azeko et al. 2016b). Also, assuming that the distribution of size of the  
plastic reinforcement can be compared to the distribution of size of inclusions ahead ofthe  crack-tip,  then  
the  indigenous  circumstances   for  interfacial  cracking  de-cohesion  can  be expressed as (Azeko et al. 
2016b; Soboyejo 2007):

                                                                                                                                    (2)

where Eₘ  represents the Elastic/Young’s modulus of the matrix, Gₘ  is the matrix fracture energy, vₘ is  
the  matrix  poison’s  ratio,  whereas  d  is  the  critical  diameter  of  the  particle.  Since  the disparities  in  
the  particle  sizes  are  known  from  experiments,  the  discrepancies  in  the  particle strengths can be re-
lated directly to the variations in particle strength.

Furthermore, the puniest link statistics could be used to determine the probability of failure or survival 
within the fracture process zone. The probability of failure within the process zone is expressed as (Soboyejo 
2002; Fashina et al. 2017):

Where  Δv the incremental volume, g is represents the strength distribution, σ denote the strength and s 
is the applied stress. Therefore, survival probability is given by:

where v is the volume of the process zone and  g(σ)dσ  is  the  elemental  strength  distribution pro-
posed by Weibull (Weibull 1951) and given by (Azeko et al. 2016b) to be:

where mis the Weibull modulus or shape parameter,  Su is the particle strength of lower bound,   Zf 
is the fraction of particles that partakes in the fracture process and  N1   is the number of particles in one  
unit  volume.  Therefore,  since  the  size  distribution  of  particles  is  known  with  the  stress distribution  
within  the  process  zone,  the  failure  probabilities  can  be  calculated  directly  from equations  5.    In 
the  case  of brittle  fracture under  linear  elastic  fracture  conditions,  the  failure probability  for  linear  
elastic  conditions  can  be  obtained  by  applying  the  Hutchinson-Rice- Rosengreen (HRR) conditions. 
From the HRR approach, the crack-tip field is given by:

   

where E represents the Young’s modulus, J is the J integral,  Sys   denote the yield  stress, n is the 
strain hardening exponent and In is a constant of integration dependent on n and stress state. If we now 
assume that weak link statistics prevail, the survival probability in the elemental volume is given by 
(Weibull 1951):

where Δvi  is the volume of the plastic zone,  su represents the lower bound strength ,  so is the mean 
strength and  si is the annular element average stress component. When  Δvi   is close to zero, the average 
stress is equal to s atr.
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If we now assume that the survival probability in the first annular element is regarded as P1  and the 
second annular element is P2  and soon, then one can estimate the survival probability in the fracture pro-
cess zone with z annular volumes as

Therefore, substituting equation 7 into 8 yields:

Equation 19 can be simplified andre-written as:

       

Hence, the Total Survival Probability can now be expressed in integral form as:

where ro  is the radial distance at which HRR stresses are truncated by crack-tip blunting and   rp   is the 
plastic zone size which is given by:

                                                                                                                                   (12)

where  KI  is  the   stress  intensity  factor  and   Sys  is  the  yield   stress.  The  crack  tip  opening dis-
placement (CTOD), Δ , is given by:

where  E' = E / (1-v2
 

) for plain  strain  conditions  and  E'= E  for plane  stress  conditions.  The param-
eter dn  is given by:
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where μ~ x  (π, n) and μ~ y  (π, n) are functions of n, and the other constants have their usual meanings. Us-
ing atypical value of dn of 0.5 and substituting equation 13 into 12 gives:

                                                                                                                            (15)

Hence, the total failure probability, Φ , is given by (Azeko et al. 2016b; Soboyejo 2007):

3 Experimental Procedures

3.1 Production of Low Density Polyethylene Pellets
Waste water sachets classified as linear low density polyethylene found littering everywhere were col-

lected in huge quantity from streets, market place, dumpsite, etc. Detergents such as tween 80 and sodium 
dodecyl sulphate were used to wash the water sachets to remove microbes and other dirty substances. The 
plastics were then dried in the sun for about two hours to remove moisture. A hot plate was plugged to 
provide heat. Kerosene was placed on the hot plate. It was heated for about one hour thirty minutes until 
it reached its initial boiling temperature of 140 ℃ .  (Azeko  et al. 2016a). The plastics were then melt-
ed in the kerosene until they completely dissolved and formed a viscous  liquid.  The  polymer’s   long  
chains  were  broken   down  upon  heating  at  its  melting temperature. The viscous liquid was rapid-
ly quenched/ cooled in a block of ice at a temperature of  between -6 ℃ and -8 ℃ . After it was rapidly 
cooled and squeezed to remove traces of kerosene, the slurry was washed severally with ethanol and ac-
etone and squeezed to further remove traces of kerosene. The powder particles were dried in the sun for 
24 hours and the plastic pellets obtained in different sizes by sieving.

3.2 Composite Processing by Volume fraction
During the preparation of the cement mortar/composite, two different types of samples were prepared 

- the one without the polyethylene labelled DM/0.00 and the one with the polyethylene labelled DM/c, 
where c represent the volume percentages of polyethylene (PE) that partially replaced certain percent-
age of sand. The volume percentages of polyethylene pellets used were 0%, 5%, 10%, 15%, 20%, 30% 
and 40%. The different percentages of PE pellets were then casted into a mould with dimensions 40  × 40  
× 160 cm3   with  mix ratio was 2:1:6  as described by (Davy 2009) [2]. Mixing of concrete and com-
paction of the blocks was done mechanically. The prepared mortars were packed on boards for 24 hours 
before curing started.

3.3 Properties of Dangote 3X Cement
According to the standard organization of Nigeria, the Dangote 3X cement also known as extra  life  

and  extra  yield  is  the  latest  version  of  cement  produced  by  the  Dangote  cement company in few 
countries across West Africa such as Nigeria and Ghana. This cement produces a high quality with 42.5 
grades. According to Oare Ojeikre, Group Chief Marketing Officer of the Dangote group, this 42.5 R 
grade cement coupled with the unveiling of a new product (42.5 3X), with the recent maelstrom surround-
ing the ban of the 32.5 grade cement because of its low grade.

Moreover, this new cement has unique mechanical properties that slightly distinguish it from other 
cement. For example, unlike other cement (32.5, Portland), the Dangote 3X provides extra strength and 
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rapid drying property which makes the product the first choice for builders and contractors.  Furthermore, 
a bag of the new Dangote 3X Cement - 42.5R variety is observed as equivalent to one and half bag of the 
regular cement bag.

In terms of Xtra Life, it is  speculated that 42.5 is ground finer than 32.5, giving a finer finish  to  
concrete  work,  adding  that  the  mixed  cement  has  fewer  air-pockets  and  therefore, adheres better and 
has longer life. Because of its higher strength characteristics, it is believed that 42.5 grade cement gives 
users higher yield than 32.5 in situations where strength is not a crucial factor,   for ordinary applications, 
cement users could mix more sand into the same quantity of  42.5 cement, thus increasing the volume 
and making more blocks. Its setting characteristics is said to be rapid (R) as against others that are nor-
mal (N). This 42.5R cement is has a tendency to set more rapidly than 42.5N cement. For example, if ‘N’ 
reaches a strength level of 10 MPa in two days, ‘R’ would reach 20 MPa in the sametime.

3.4 Mechanical Testing
The  composite  samples  produced  with  or  without  the  polyethylene  were  subjected  to different 

mechanical testing such as compressive/flexural  strengths and  fracture toughness. A universal mechan-
ical testing machine (TIRAtest model 2810, Schalkau, Thuringia, Germany) was used   for    the   compres-
sive/flexural    strength    and   fracture    toughness   measurement.    The compressive/flexural tests were 
carried out using a displacement rate of 0.05 mm/s and a strain

rate of 0.05/s. The samples were loaded monotonically using a load cell of 25 kN until failure oc-
curred in the samples.

The flexural strength was calculated from the expression σ  =                                             (17)

where σ is the flexural strength (N/mm2), L isthe loading span in mm), F is the maximum applied load (N), 
B is the average width of the specimen (mm), and D is the average thickness (mm) [13].

For each of the specimen, where σc  is the critical applied stress, f (a/w) is a function of the crack 
length, ac   is the critical crack length and W is the width of the  specimen/component, the fracture 
toughness is given by (Azeko et al. 2016a):

The values of the compressive strength of the mortar were compared to that of the European stan-
dard for the requirement of compressive strength for various curing time given in the Table 2

4 Results and Discussions
The results for the compressive strengths, flexural strengths and fracture toughness values are shown in 

Tables (2-5) and Figures (2-5).  It was realized that, the compressive strengths for the different samples 
increases as the number of days increases until the maximum compressive strength is attained at day 28 
(Table 3). This is possible because the cement in the composite takes at least 21 days for complete 
hydration. The complete hydration of cement increases the bond strength in the composite and this there-
fore, increases the overall compressive strengths in the composite. However, the average weights of the 
samples decreases as the number of days increases as illustrated in Figure 2 and Table 3. The results 
showed that the weight of the mortar

decreased  with  increasing  volume  percentages  of  PE  up  to  40.  This  is  associated  with  the dehy-
dration of water molecules by cement, enabling cement to be completed hydrated.

The results for the trends in compressive strengths are shown in Table 3 and Figure 3. It is seen that the 
compressive strength for the composite without the inclusion of polyethylene was tremendously higher 
than the composites with different volumes of polyethylene for the first one week. However, as the number 
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of weeks increases to the maximum weeks of four, the difference in the compressive strengths of compos-
ite without PE inclusion and composite with PE inclusions for volume percentages from 5 % up to  15 % 
was comparably small. This is because; at day 28, the composite with PE inclusions had completely cured 
and the bond strength between the cement and the PE attained its maximum strength. Since the primary 
idea for the inclusion of PE in the composite  is  to  help  in  bridging  or  shielding  cracks/micro-cracks,  
higher  bond  strength  co- existing between the mortar and the PE leads to overall compressive strengths in 
the composite.

The  results  for  the  flexural  strengths  and  fracture  toughness  values  for  the  different compos-
ite composition are presented, respectively, in Figure 4 and Figure 5. It is observed that the flexural 
strengths for the composite with PE inclusions from 5 % up to 20 % are higher than the mortar without  
PE  inclusions  (Figure  4).  The  polyethylene  (PE)  is  responsible  for  such behaviour in the composite. 
The availability of PE in the composites facilitates the shielding of micro-cracks, resulting in the overall 
strength of the composite.  However, the composite with PE inclusions of more than 20 % recorded lower 
flexural strengths as compared to the cement mortar without PE. This is attributed to the fact that more PE 
pellets causes agglomeration and creates a weak linkage between PE-PE particles/pellets surface interac-
tions.

The fracture toughness values of the composite increases with increasing curing time up to the maximum 
of 28 days (Figure 5). Also, the fracture toughness values increases with the inclusion of PE pellets in the 
mortar for PE volume percentages of 5 % up to 20 % and then decreases with PE volume  percentag-
es  of  more   than   20   %   and  beyond.  Again,  the  presence  of  many   PE pellets/particles in the 
composites causes agglomeration and this creates a weak interface between PE-PE particles interactions, 
which has an overall effect in the fracture toughness of the resulting composite.

Flexural strength measures the strength of concrete due to bending/bending moments by mostly ap-
plying a three-point loading. Cementitious materials are generally known to be strong in compression but 
poor in tension because the bonds formed cannot be  stretched beyond their limits. The materials used 
to make the mortar are mostly brittle and fracture upon tensile loading. Flexural Strength of Concrete is 
about 10 to 20 percent of compressive strength depending on the type, size and volume of coarse aggre-
gate used (Setién et al. 2009). The polymer when deformed elastically can return to its normal shape. 
Therefore, the presence of the polymer in the mortar helped  to   improve  its  ductility.  Furthermore,  the   
flexural  strength  and  fracture  toughness increased up to 20% of the polymer before it started to de-
crease. This is also because the high tensile strength of the polymer in Table 6 contributed to the increase 
in the flexural strength and fracture toughness of the mortar.

The  results  for  the  reliability  analysis  of  the  different  volume  percentages  of  PE-mortar com-
posites are illustrated in Figures 6 and 7. It is clearly shown that the PE-mortar composites with  PE  
volume  percentages  of  20  %  had  the  highest  survival  probability  (Figure  6).  The composite  with  
this  volume  percentage  can  withstand  crack  up  to  7  mm,  with  a  survival probability of 0.6. At this 
probability, the composite is still strong enough to carry the required load on it. Also, this composite 
with PE volume percentage of 20 % can survive up to a crack extension of 16 mm, before final failure 
occurs at exactly crack propagation of 18 mm (Figures 6 and 7). Composites with PE volume percentages 
of 10 % and 15 % performed fairly well as far as survival and failure of the composite is concerned as il-
lustrated in Figures 6 and 7.

5 Conclusion
This research presented a mechanistic approach of how to recycled LDPE waste into useful materials for 

building applications in tropical countries. This mechanism allows us to minimize environmental  deg-
radation  and  also  its  hazardous  impacts  (land pollution,  health risks,  etc.). According to this research, 
the use of such waste polyethylene materials in mortar helped to lower the weight of the material by ~8 % at 
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5 vol. % PE; ~12 % at 10 vol. % PE, and ~29 % at 40 vol. %. This means that these different decreased 
percentages at various increased in the PE can be used for different applications for the manufacturing 
of slabs, designer column, beam, parapets, etc.

Additionally, the presence of the PE in the mortar decreased the compressive strength by 8.2 at 5 vol. 
% PE, 12 % at 10 vol. % PE, 15 % at 15 vol. % PE, and 48 % at 40 vol. % PE due to inadequate bonding 
between the cement paste and the PE. However, 5 %,  10 %,  15 % and 20 % met the maximum com-
pressive strength requirement for concrete/mortar after 28 days. As the objective of the work was 
concerned, the flexural strengths, fracture toughness of the mortar increased as the volume percentage 
of PE increased up to values of 20 vol. %. This implies that instances where the materials needed to be 
strong and tough, these different percentages could help designers to make the right choice(s).

It is clearly shown that the PE-mortar composites with PE volume percentages of 20 % had the  highest  
survival  probability  (Figure  6).  The  composite  with  this  volume  percentage  can withstand crack up to 
7 mm, with a survival probability of 0.6. At this probability, the composite is  still  strong enough to  carry 
the required load  on it. Also, this composite with PE volume percentage of 20 % can survive up to a 
crack extension of 16 mm, before final failure occurs at exactly crack propagation of 18 mm (Figures 6 
and 7). Composites with PE volume percentages

of 10  %  and  15  %  performed  fairly  well  as  far  as  survival  and  failure  of the  composite  is con-
cerned as illustrated in Figures 6 and 7.
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Table 1: Representation of Samples by Volume Fraction

Sample Water(g) Cement(kg) Sand(kg) Polymer(kg)

DM 225 450 1350 0

DM/0.05 225 450 1282.5 67.50

DM/0.10 225 450 1215.00 135.00

DM/0.15 225 450 1147.5 202.5

DM/0.20 225 450 1080.00 270.00

DM/0.30 225 450 945.00 405.00

DM/0.40 225 45 810.00 540.00

Note: DM/0.00=Sample with 0 % PE; DM/0.05=Sample with 5 % PE; DM/0.0=Sample
with 10 % PE; DM/0.15= Sample with 15 % PE; DM/0.20=Sample with 20 % PE;

DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE

Table 2: European Standard for Compressive Strength (EN97 -1)

Note: DM/0.00=Sample with 0 % PE; DM/0.05=Sample with 5 % PE; DM/0.0=Sample 
with 10 % PE; DM/0.15= Sample with 15 % PE; DM/0.20=Sample with 20 % PE; 

DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE
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Table 3: Average Weights and Compressive Strengths for Sample Tested

Note: DM/0.00=Sample with 0 % PE; DM/0.05=Sample with 5 % PE; DM/0.0=Sample 

with 10 % PE; DM/0.15= Sample with 15 % PE; DM/0.20=Sample with 20 % PE; 

DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE

Table 4: Values of Maximum Compressive Load at Fracture

Note: DM/0.00=Sample with 0 % PE; DM/0.05=Sample with 5 % PE; DM/0.0=Sample with 

10 % PE; DM/0.15= Sample with 15 % PE; DM/0.20=Sample with 20 % PE; 

DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE
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Table 5: Average Flexural Strengths and Fracture Toughness Values

Note: DM/0.00=Sample with 0 % PE; DM/0.05=Sample with 5 % PE; DM/0.0=Sample 

with 10 % PE; DM/0.15= Sample with 15 % PE; DM/0.20=Sample with 20 % PE; 

DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE

Table 6: Major Properties of Low Density Polyethylene

Figure 1: Schematic representation of a large-scale bridging model (Adapted from Azeko et al., 2015)
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Number of Days (Days)

Figure 2: Graph Showing Change in Weight of Samples  Note: DM/0.00=Sample with 0 % PE; 
DM/0.05=Sample with 5 % PE; DM/0.0=Sample  with 10 % PE; DM/0.15= Sample with 15 % PE; 
DM/0.20=Sample with 20 %PE;  DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE

Number of Days

Figure 3: Trend in Compressive Strengths for Different Composite Composition  Note: DM/0.00=Sample with 
0 % PE; DM/0.05=Sample with 5 % PE; DM/0.0=Sample  with 10 % PE; DM/0.15= Sample with 15 % PE; 

DM/0.20=Sample with 20 % PE;  DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE
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Number of Days 

Figure 4: Flexural Strength of Composite  Note: DM/0.00=Sample with 0 % PE; DM/0.05=Sample with 5 
% PE; DM/0.0=Sample  with 10 % PE; DM/0.15= Sample with 15 % PE; DM/0.20=Sample with 20 % PE; 

DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE

Number of days 

Figure 5: Trend of Fracture Toughness  Note: DM/0.00=Sample with 0 % PE; DM/0.05=Sample with 5 % 
PE; DM/0.0=Sample  with 10 % PE; DM/0.15= Sample with 15 % PE; DM/0.20=Sample with 20 % PE; 

DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE
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Figure 6: Survival Probability of Cement Mortar at Different Volume Percentages of PE

Figure 7: Failure Probability of Cement Mortar at Different Volume Percentages of PE 

Note: DM/0.00=Sample with 0 % PE; DM/0.05=Sample with 5 % PE; DM/0.0=Sample 

with 10 % PE; DM/0.15= Sample with 15 % PE; DM/0.20=Sample with 20 % PE; 

DM/0.30=Sample with 30 % PE. DM/0.40=Sample with 40 % PE
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Abstract
High Slag Concrete (HSC) offers substantial benefits in terms of durability and reduced carbon footprint, 
but  its  late  strength  gain  delays  accurate  28-day  strength  prediction  from  early strength.  This  study 
aims  to  develop  accelerated  oven  curing  regimes  to  predict  28-day compressive strength of HSC accu-
rately.  The research focuses on the fundamental question of whether the application of accelerated curing at 
specific temperatures would help estimate High Slag Concrete's long-term strength. To achieve this, a series 
of concrete specimens were subjected to  accelerated  oven  curing  at  50°C  and  70°C.   The  compressive 
strength  development  was observed and correlated with standard curing conditions. Additionally, the hydra-
tion kinetics of the cementitious paste under these elevated temperatures were examined by using the Isother-
mal calorimetry method. This research will produce a predictive model correlating accelerated curing data 
with 28-day strength. The findings ofthis study will provide a reliable method for estimating the strength of 
High Slag Concrete at an early age, enabling more efficient construction planning.

(Aft). Monosulphur Calcium Sulphoaluminate Hydrate (AFm). Delayed Ettringite Formation (DEF)
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1. Introduction
There was a time when Portland cement (OPC) was considered the sole binding material in concrete. The 

Portland  cement  exhibits  higher  carbon  emissions  in  traditional  concrete  and  it  became  a  persistent 
challenge before engineers and architects, therefore the concrete technologists , researchers, contractors etc. 
were  looking for alternative  materials to  replace  Portland cement and addition without  losing the prop-
erties of cement. Supplementary cementitious materials in concrete like Pulverized Fly Ash (PFA), Ground 
Granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), etc. were introduced and widely used from the 
mid of 20th Century in the construction industry for a variety of reasons including cost-effectiveness, en-
hanced durability properties, and its lower carbon dioxide emissions.

GGBFS is a by-product of iron production in blast furnaces and  is similar to cement which has hydraulic 
properties(1). Compared to OPC, GGBFS  has lower embodied carbon, approx. 1/10 compared to  of 79.6 
Kg CO2e/tonne (2).  Concrete with cement as a binder, is a fundamental building material used globally in 
the construction industry, therefore replacing cement with GGBFS is considered to be one of the strategies to 
decarbonise cement and concrete. It is possible to reach higher replacement rate (36%-80% (3)) at the same 
time improving ability to resist aggressive agents from penetrating into concrete(4).

In the precast industry, it is extremely difficult to achieve very early age strength especially within 24 hours 
from pouring for a high GGBFS concrete mix (5). The  mold turnover is the main profit factor for precast 
concrete industry; therefore, it is mandatory to facilitate accelerated curing method in order to achieve the de-
sired compressive strength for de-shuttering and lifting the precast elements. The higher the curing tempera-
ture, the faster the heat of hydration of the concrete (6), which is sufficient enough to produce a significant 
increase in the early age strength of slag cement concrete (7).

Compressive strength is one of the most critical mechanical properties that determine the load-carrying 
capacity and durability of concrete (8,9) . The strength of concrete is assessed based on 28 days results. The 
reason to consider the 28 days compressive strength as a parameter is based on the maturity of the concrete. 
The strength development of concrete depends on both time and temperature. The concrete strength is a func-
tion of the summation of product of time and temperature. This is called maturity of concrete.

Maturity = Σ (time x temperature)

The temperature is taken from an origin lying between -12 and -10°C because hydration of the concrete 
stops when the temperature of the concrete reaches above -12°C. However, -11°C is usually taken as a datum  
line for calculating  maturity. The curing temperature of concrete specimen is 20°C±2  (10).  For instance, 
A fully matured concrete cured at 18oC for 28 days will be 19,488oC h, however in standard calculations, 
the maturity of the fully cured concrete is taken as 19,800oC h, this discrepancy should be attributed to the 
datum value used for the calculation. Hence, compressive strength at 28 days is considered in the industry 
as a standard to determine the mechanical property of the concrete (11). As a rapid quality control procedure 
Its crucial for concrete Quality Control Engineer, to predict desired strength at early age. According to the 
maturity model using OPC, cube strength results should achieve 46% of characteristic compressive strength 
in 3 days and 70% in 7 days (12). This assures that the cube will achieve desired compressive strength in 28 
days. Whereas in the case of mixes with higher percentage of GGBFS etc.,  the slower the early strength gain 
compared to OPC due to reduced availability of CaO in (5). Nevertheless, slag cements exhibit more strength 
development at later stages(13). The reduced availability of CaO in GGBFS is a key factor for slowing down 
the hydration process(5) By increasing the temperature during the curing time, we can increase the early 
age strength, so with increasing the GGBFS content and decreasing the embodied carbon, we might achieve 
satisfactory early age strength. Nevertheless, there are no models predicting long term strength for concretes 
with high GGBFS exposed to high temperature curing. Knowing the  relationship  between  early  age  and  
28  days  compressive  strength  for  concretes  with  high  OPC replacement with GGBFS cured in high tem-
peratures allow precast concrete producers to optimise their production with minimising associated embodied 
carbon.
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2. Literature Review:
Mixes that contain GGBFS, particularly in low ambient temperature conditions, demand an extended

period of curing in order to achieve sufficient strength development (14). Regourd states that the

determined activation energy for slag cements exhibits a higher value compared to the activation energy    
of their corresponding OPC, specifically 50 and 46 J.mol-1 respectively (15). Therefore, thermal treatment is 
advantageous for slag cement as it serves as an efficient source of activation energy for the hydration    pro-
cess of slag, thus it can be regarded as a latent cementitious material as specified above.

When GGBFS is mixed with OPC, the suspension of slag is activated by the elevated pH of the solution, 
which is attributed to the presence of calcium hydroxide and alkali ions in the pore solution. Both the clinker 
and the slag undergo reactions simultaneously, resulting in the formation of calcium silicate hydrate (C-S- H), 
which contributes to the development of strength. The hydration process of GGBFS generally occurs more 
slowly compared to Portland cement. Furthermore, during the initial stages of hydration, slag can partially 
function as  an  inert filler. This filler effect enhances the  nucleation  and growth of C-S-H  by increasing the 
effective water-to-cement ratio and providing additional nucleation sites (16).

Enhancing the  basicity of slag  results  in  increased  hydration  of the slag over a specific time  period. 
However, higher replacement levels result in decreased slag hydration, partly due to the reduced availability 
of portlandite caused by the lower cement content. For comparison, over 80% of the cement in each system 
had hydrated after 7 days(17).

The degree of C3S hydration increases with the addition of slag after 1 and 3 days; however, over a longer 
period, it remains comparable to that without slag addition. This phenomenon is thought to result from the 
crystallization of calcium silicate hydrate (C-S-H) on the slag particles (Fig 1). Additionally, the reduction 
in calcium ion concentration in the liquid phase plays a prominent role, especially in the case of very finely 
ground slag.(17)

Fig 1. Example of graph showing degree of hydration (%) with respect to time of C3S, C2S, Slag and

Cement for CEM I, CEM III/A, CEM III/C Cement. [Adapted from (18)]
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The influence of slag on the hydration of C3A and C4AF is minimal, as the concentrations of Ca2+ , Al3+,  
and SO4

2-  ions in the liquid phase are not significantly altered by the presence of slag. However, since calci-
um aluminate hydrates and ettringite are well-crystallized and tend to form a porous rather than a compact 
microstructure, it can be inferred that the hydration rate will be somewhat reduced. Conversely, some calcium  
hydroxide  and  SO4

2- ions  are  adsorbed  on the slag glass surface and  incorporated  into  the pozzolanic re-
action, which may accelerate the reaction of aluminates (18).

There is a strong correlation between the degree of slag hydration and cement strength. However, as noted 
by Fierens, varying strengths can be observed at the same hydration degree of different slags, indicating that 
other factors, such as the microstructure of hydrates and the conditions of their crystallization, also influence 
strength development (19).

2.1 Accelerated Curing
Accelerated curing can be conducted in various methods namely Warm Water method, Autogenous curing 

method, Boiling water method (20)etc. The accelerated curing techniques used for this experiment is Oven 
Curing method which is explained below.

Oven curing method is preferred due to its easiness in performing the accelerated test as no sophisticated 
setup is needed because every lab will be having a thermostatically controlled oven which fair enough for 
conducting accelerated test by oven curing. Moreover, it is convenient for high slag concrete [(HSC) due to 
its  efficiency  in  providing  actual  control  of  curing  parameters. This  can  be  achieved  by  meticulously 
regulating temperature, a critical factor influencing the hydration of GGBFS, oven curing facilitates faster 
strength development without compromising the hardened concrete properties(21).

Furthermore, oven curing ensures uniform environmental conditions, minimising the variations in curing 
outcomes and enhancing the consistency of strength prediction. This method effectively protects concrete 
from external influences, ensuring unswerving quality and performance. The accelerated strength gain facili-
tated by oven curing is advantageous for construction projects demanding pressing timelines(22).

TNW Akroyd has conducted an exceptional study on oven curing method. He performed the oven curing 
30 minutes after mixing the cubes and it was covered with base plate once the cube is placed inside the oven, 
temperature is brought to 85°C within 1 hour, and maintained the same temperature for a period of 5 hours. 
After 5 hours, the cubes are removed from the oven, stripped and allowed to cool for 30 minutes. Then it is 
transferred for compressive testing. Akroyd had concluded that the compressive strength test results for cubes 
cured normally for a period of 7 or 28 days may be predicted by accelerating the curing of the cubes and test-
ing them 29 hours after casting   (23).

2.2 Effects of Accelerated Curing on Concrete
This section examines the complex mechanisms by which accelerated curing processes influences the fun-

damental characteristics of concrete. Through a comprehensive analysis of these factors, this study aims  to  
explain  the  potential  advantages  and  disadvantages  of  accelerated  curing  for  high-slag concrete, pro-
viding   valuable   insights  for   optimizing   construction   practices   and   achieving   desired performance 
outcomes.

2.2.1 Microstructure

During the accelerated curing process the elevated temperature and humidity conditions contributes to 
shorten the induction period of cement hydration(24) . There is no change in the main products of hydration 
like Calcium Silicate  Hydrate Gel (C-S-H), Calcium  Hydroxide (Ca (OH)2),Calcium Alumina (AFt), and 
Monosulphur Calcium Sulphoaluminate Hydrate (AFm) (25). Accelerated curing techniques change the mor-
phology,  density,  atomic  ratio,  and  chain  length  of  C-S-H  gels.  Under  rapid  increase  in  curing tem-
perature changes the bulk density of the ionic structure. The curing temperature affects the atomic distribution 
and changes the atomic proportions (26).
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2.2.2 Delayed Ettringite Formation

Ettringite is a mineral composed of hydrous calcium aluminate sulphate, which undergoes formation with-
in concrete during the process of curing under ambient conditions. However, in situations where concrete is 
exposed to high temperature curing, such as in accelerated curing or in the case of mass concrete, the excess 
heat produced during the process of cement hydration cannot be easily dissipated. As a result, ettringite for-
mation can be delayed. When the concrete is set, it may lead to expansion and results in internal cracking this 
phenomenon is called Delayed  Ettringite Formation (DEF)  (27).  Nevertheless, prolonged periods of ele-
vated curing  result  in significantly decreased expansions, which align with documented chemical alterations 
that may involve the formation of ettringite following heat treatment (28).

2.2.3 Compressive Strength

This parameter requires further elaboration as it is the pivotal property being analysed in this paper. The 
compressive strength of concrete refers to the ratio of the maximum uniaxial load that can be sustained by the 
concrete at a specific rate, to the cross-sectional area of a specimen(29). Some of factors effecting the com-
pressive strength of a concrete specimen are noted below (30).

• Porosity

The relationship between water cement ratio and porosity is a significant factor influencing the compressive 
strength because it affects the porosity of both the cement mortar matrix and the interfacial transition zone 
between the matrix and the coarse aggregate(31)

• Water Cement Ratio

Water cement ratio has direct relation on strength of concrete due to its natural behaviour of awakening of 
the matrix when increasing the water cement ratio due to increase in porosity of mix whereas it behaves vice 
versa when water cement ratio is lowered.

• Degree of Compaction

The strength of concrete is significantly affected by the increased energy applied during compaction. A 
portion of this strength enhancement may be attributed to unhydrated cement particles being encapsulated by 
thinner layers of hydrated cement. Additionally, it is plausible that high-pressure-compacted concrete derives 
its strength from a combination of particulate interlocking, sintering processes, and the hydration of cement.
(31)

• Temperature

The influence of temperature on concrete strength depends on time – temperature history of casting and 
curing which means the three possibilities concrete cast and cured at same temperature, concrete cast at dif-
ferent temperatures but cured at a normal temperature and concrete cast at normal temperature but cured at 
different temperatures.(31)

It has been claimed (32) that the addition of gypsum to the mix could significantly lessen the adverse effect 
on strength at later ages after initial high temperature curing. Normally gypsum dosage is around 3-5% (42). 
This is most likely due to the gypsum interfering with the hydration phases (C3A and C4AF) that readily form 
in the presence of heat. As a result, the later hydration of slower-acting phases (C2S and C3S) does not disturb 
these phases, reducing microstructural damage and enhancing long-term strength.

Many researches have conducted research on 28 days compressive strength of concrete estimation based on 
early age strength.  Nurse (1949) introduced steam curing, observing  inconsistency due to cement composi-
tion and hydration rates. Akroyd and Smith-Gander (1956) developed the boiling method, with their modified 
approach (24-hour normal curing + 33-hour boiling) which closely aligned with 28-day strengths, eliminating 
the need for correlation graphs. Ordman and Bondre (1958) highlighted the influence of oven temperature 
inconsistencies, causing significant under-predictions in high-strength concrete. Neville (1957) demonstrated 
that smaller cubes tend to over-predict strength, particularly at high compressive levels. Emtroy (1958) pre-
sented the Cement and Concrete Association (C.C.A.) curve, providing a standardized and reliable framework 
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for early strength predictions, especially for strengths below 28 MPa.   In that Prof. Kings method of accel-
erated oven curing (Fig.2) is considered to be more accurate and easier for adoption (11,23).  For instance, 
accelerated oven curing strength of 42MPa has been increased to more than 65MPa at 28 days, when it is 
cured under normal conditions (33). Prof. Kings cured the cubes at 93°C temperature for a period of 5 hours, 
and total time spend for the accelerated curing was 7 hours only. Moreover, the aforementioned research was 
carried out on 100% OPC mix cubes. Whereas over here we have performed the accelerated oven curing on 
high slag concrete and the duration of curing time is more than 24 hours.

Fig.2 Prof King’s prediction curve for accelerated strength as percentage of 28 days with respect to the

accelerated strength [Adapted from (23)].

As previously stated, there exists a range of methods for forecasting the strength of concrete by employ-
ing diverse accelerated curing protocols. However, when it comes to concrete with a higher percentage of 
GGBFS composition, there is a need for further investigation into the effectiveness of accelerated curing 
using a thermostatically controlled drying oven. The concrete's early strength can be significantly influenced 
by the increased content of GGBFS. Consequently, it is necessary to thoroughly investigate the correlation 
between the early strength achieved through accelerated oven curing at various temperatures.

The majority of international standards pertaining to conventional accelerated curing methods have been 
withdrawn or replaced by other standards, resulting in a lack of a standardised protocol for conducting these 
tests. Ensuring the precision of forecasts derived from accelerated curing is of utmost importance in order to 
ascertain the dependability and feasibility of quality control protocols. This can be accomplished by juxtapos-
ing these  predictions against the concrete's  real-world  performance over extended  periods of service life.
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The potential limitations of current predictive models for estimating the 28-day compressive strength in 
high slag concrete under accelerated curing regimes may pertain to their accuracy and scope. There is a lack 
of research in the field of developing and validating reliable predictive model that consider the unique hydra-
tion characteristics of slag and its interactions with accelerated oven curing method. Knowing this relation-
ship allows precast concrete producers to optimise their production with minimising associated embodied 
carbon

3. Materials and Methods
In this section we have meticulously analysed the properties of all constituent materials i.e., OPC, GGBFS, 

coarse aggregate and fine aggregate, admixture and water in order to assure that constituent materials con-
form to BS EN 206(34) . The testing of constituent materials  performed based on international standard (listed 
in next sections) . The Quality Control testing and properties of constituent materials are explained below in 
detail.

3.1. Cement
Cements are classified into number of types based on their application, environment, availability, etc. The 

most common types of cement used in the Middle East are (I) Ordinary Portland Cement (OPC) (ii) Sulphate 
Resistance Cement (SRC). For this research the OPC was adopted due to its availability and consistency 
in Qatar, where the research took place. The chemical composition of OPC is analysed in an accredited 
third-party laboratory and it complies with BS EN 197-1 (35). The OPC (CEM I) used for this study is 42.5R 
grade. The chemical composition is given below in Table 1.

Table 1: Chemical Composition of CEM I (OPC) & GGBFS

Chemical Components
CEM I Test
Results (%)

BS EN 197-1 
Limits

(%)

GGBFS test
Results (%)

BS EN 15167- 1 
Limits

(%)

Magnesium Oxide (MgO) 3.2 4.9 Max.18.0

Aluminium Oxide (Al2 O3 ) 3.6 13.5

Silicon Dioxide (SiO2 ) 20.85 34.21

Sodium Oxide (Na2O) 0.18 0.16

Potassium Oxide (K2O) 0.4 0.4

Calcium Oxide (CaO) 63.03 42.90

Loss of Ignition 2.6 Max 5.0 0.9 Max 3.0

Ferric Oxide (Fe2O3) 1.8 0.9

Insoluble Residue (IR) 0.5 Max 5.0 0.5 Max 1.5

Chlorine (Cl) 0.004 Max.0.1 0.004 Max.0.1

Sulphur Trioxide (SO3 ) 2.2 Max.3.5 0.5 Max.2.5

CaO/SiO2 Ratio 3.02 Min.2.0

Titanium Oxide (TiO2) 0.19
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Table 2. Clinker Compounds of CEM I (OPC)

Clinker Compounds CEM I Test Results (%)

Alite(C3S) 65.1

Belite(C2S) 10.7

Aluminate(C3A) 6.5

Ferrite(C4AF) 5.47

The clinker compounds were calculated as per ASTM C 150 (ref) and displayed in Table 2. Furthermore, 
C3A content in this cement is 6.5% which makes this cement as moderate sulphate resistance cement even 
though it is marketed as OPC. The reduction of C3A content is being pursued in Qatar as a result of the ele-
vated levels of sulphate found in the soil.

There are three main parameters which are considered by manufacturers for assessing the quality of cement 
are listed below

LSF(%)= CaO/(2.8SiO2+1.2Al2O3+0.65Fe2O3)

SR (%)=SiO2/(Al2O3+Fe2O3)

AR(%)=Al2O3/(Fe2O3)

The first one is lime saturation factor (LSF) and it is determined by the ratio of lime to silica, alumina , 
and Iron Oxide and governs the relative proportions of C3S and C2S. Typical values for LSF is between 92%- 
99%(36) .

The second parameter is Silica Ratio (SR) which is otherwise called silica modulus. A high silica ratio 
means that more calcium silicates are present in the clinker and less aluminate and ferrite. Whereas the final 
parameter Alumina Ratio (AR) determines the potential relative proportions of aluminate and ferrite phase 
in the clinker.AR is usually between 1 and 3 (6). The aforementioned parameters for the cement used for this 
research is tabulated in Table 3.

Table 3. Cement Parameters

Lime Saturation Factor (LSF) (%) 93

Silica Ratio (SR) (%) 3.86

Alumina Ratio (AR) (%) 2

Winter found that in order to achieve enhanced early strength of cement, it is necessary for the values of 
SR (Silica Ratio) and LSF (Lime Saturation Factor) to be elevated (6). Nevertheless, there are certain dis-
advantages associated with the use of high LSF (lime saturation factor) and SR (silica ratio) mixes in kilns. 
These mixes pose significant challenges in terms of achieving the desired reactions, as they are more resistant 
to combustion and hard to combine. The observed phenomenon is categorized by elevated levels of carbon 
dioxide  (CO2) emissions, which can  be  associated to the augmented calcium  oxide  (CaO) concentration in 
the cement as well as an enlarged demand for fuel.

3.2 Ground Granulated Blast Furnace Slag (GGBFS)
The physical and chemical properties of GGBFS used is meticulously analysed by an accredited third-party 

laboratory. The measured basicity ratios for GGBFS reactivity are tabulated in Table 4.
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Table 4. GGBFS Basicity Ratios

Chemical Components Test Results (%) Limits (39) (%)

P1= CaO/SiO2 1.25 >1.0

P2= (CaO+MgO)/SiO2 1.4 >1.0

P3= (CaO+MgO)/ (SiO2+Al2O3) 1 1.0-1.3

P4= (CaO+0.56Al2O3+1.4MgO)/ SiO2 1.67 > 1.65

P5= CaO+MgO+Al2O3 / SiO2 1.79 >1.0

3.3 Mix Proportions
A single grade of mix with three different cementitious combinations is considered for this study. The pri-

mary objective of adding different GGBFS proportions was to comprehensively investigate the influence of 
a wide range of GGBFS additions on concrete properties. All the mixes are designed to be C50 grade. The 
different cementitious combination of the mixes used for this study is given below

I.       C50-OPC 100%

II.       C50-OPC+50%GGBFS

III.       C50-OPC+70% GGBFS

The mix designs are designed in SSD (Saturated Surface Dry) condition for each cementitious combination. 
Mix designs are displayed in Table 5 with the yield calculations to ensure that concrete is designed for 1m³ 
. Herein, air content in the mix is calculated according to ACI 211.1 (37) which is 2% when the maximum 
aggregate size is 20mm. The yield of the mix may be slightly kept higher however in reality the air content 
would be less than the designed value hence yield would be around 1.02 m3.

Table 5. Mix designs

Mix Grade

Mix

Name

OPC

(Kg/m³)

GGBFS

(Kg/m³)

Water

(Kg/m³)

10/20mm

(Kg/m³)

4/10mm

(Kg/m³)

0/4mm

(Kg/m³)

HP 540

A

(Kg/m³)

Air

(%)

W/C

Ratio

Theoretical

Density

(Kg/m³)

C50 OPC Mix A 410 - 144 778 382 800 4±1.5 2% 0.35 2510

C50-

OPC+50% 
GGBFS

Mix B 210 210 147 771 385 771 4±1.5 2% 0.35 2490

C50-

OPC+70% 
GGBFS

Mix C 129 301 151 759 380 759 4±1.5 2% 0.35 2480

The quantity of admixture in the latter mixes are subject to have a tolerance of ±1.5 kg/m³ due to ambient 
conditions and presence of moisture in the fine aggregate.
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3.4 Mixing Procedure
The cube specimens were made in accordance with the BS EN 12390-2 (10). Consequently, the demolding 

of the cubes was carried out within this specific timeframe. The cubes were stored within the laboratory for a 
duration of 22 hours subsequent to their casting, after which they were deemed suitable for transportation to a 
third-party laboratory for the purpose of conducting tests. During the transportation process, gunny bags were 
utilized to cover the concrete cubes in order to mitigate moisture loss. The Fig 3 depicts Activity Vs Time to 
understand the timeline of sampling until testing.

The 27 cubes were subjected to standard water curing regime specified by BS  EN  12390-2(10). The tem-
perature of the water used for curing in the tank was adjusted to 20°C. Within the set of 27 cubes, there are 
9 cubes designated for each of the three age groups: 7 days, 14 days, and 28 days respectively. These cubes 
are specifically allocated for the purpose of conducting compressive strength tests in accordance with BS EN 
12390-3(38). The schematic flow of complete trial mix procedure is depicted below.

                                                                                                                                              

Fig.3: Schematic Flow of Trial Mix from Beginning to End

3.5 Isothermal calorimetry
The isothermal calorimetry test was conducted to study the hydration of cementitious the relationship 

between accelerated oven cured strength and concrete subjected to water curing at different ages has been 
well studied in the project. Calorimetry test was performed on accelerated oven cured mixes to monitor the 
hydration  kinetics.  The  Isothermal  calorimeter  has  to  be  placed  in  an  environment  with  a  constant 
temperature, typically a high-precision thermostat, in order to accurately measure heat. It is crucial to verify 
the accuracy of the thermostat's temperature setting. The calorimetry tests have got several applications like 
determination of heat of hydration, estimating the activation energy, cement admixture interactions, etc.(39).

3.6 Accelerated Oven Curing Procedure
The remaining 18 cubes were subjected to oven curing in two distinct thermostatically controlled electric 

drying ovens, with each oven accommodating 9 cubes. The drying oven was calibrated and can conduct a 
heat up to a range from 20°C to 250°C.

The ovens were set to different target temperatures, 50°C and 70°C, and the oven curing was restricted to 
24±0.5 hours. In the experiment involving specimens with a target curing temperature of 50°C, the cubes 
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were initially cured at a temperature of 30°C for a duration of 2 hours. Subsequently, the curing temperature 
was raised to 50°C for the remaining duration of the oven curing process. Whereas in the case of 70°C oven 
curing setup, the specimens were initially cured at a temperature of 30ºC for a duration of 2 hours. Subse-
quently, the temperature was raised to 50ºC and maintained for 1 hour. Finally, the specimens were subjected 
to the desired curing temperature of 70ºC for the remaining curing period, which lasted for 24±0.5 hours. The 
temperature time flow for 50ºC was depicted below in Fig.4. The time-temperature relation was similar to the 
70ºC Curing regime except temperature progression style as stated in previously.

Fig.4. Time- Temperature Flow of Experiment for 50°C

Following the removal of the cubes from the oven, a designated cooling period of approximately 4 to 5 
hours was observed, and the cubes were subjected to compressive testing of concrete as per BS EN 12390- 3 
(38). The results of compressive strength of cubes are reported separately for cubes cured at different acceler-
ated oven curing regimes that is 50°C and 70°C.

4. Results
The three mixes with fourth generation high range PC admixture with a solid content more than 35 is 

used for high workability for pumping.  Initially, elevated pumping pressures are necessary to overcome the 
frictional resistance between the concrete and the pump tube. Once this initial resistance is mitigated and 
a smooth interface is established, the required pumping pressure can be reduced. A sustained decrease in 
pumping pressure relative to the initial value signifies satisfactory flowability characteristics of the High- 
Performance Concrete (HPC) mix containing the slag. Hence the target slump of 200±40 mm for better work-
ability due to high GGBFS replacement and maximum target temperature is 35°C (40). The higher slump was 
proposed the cube specimens were made in accordance with the BS EN 12390-2 (10). It was observed  that  
the  concrete  had  achieved  final  setting  within  a  period  of  17-20  hours  after  casting. Subsequently the 
aforementioned curing regimes of the specimens, calorimetry and compressive strength test were conducted. 
The results have been elaborated below.

4.1 Conduction Calorimetry
The heat flow of the OPC + GGBFS mixes are presented below. For 50°C, the highest first peak was for 

OPC, lower for 50% GGBFS and the lowest 70% GGBFS cement replacement. It was noticeable, that for 
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the highest cement replacement, the first peak was delayed. For 50% OPC replacement delay was not noticed 
(Fig.5).

Fig.5. Calorimetry Graph at 50°C

Fig.6. Calorimetry Graph at 70°C

For 70°C, the highest first peak was for OPC, lower for 50% GGBFS and the lowest 70% GGBFS cement 
replacement. For both 50% and 70% OPC replacement with GGBFS the first peak was slightly delayed com-
pared to 100% OPC (Fig.6).

4.2 Compressive Strength Results
The main aim of this study was to find the relation between accelerated oven cured specimens and water 

cured specimens for establishing a prediction model. In order to establish a prediction model, monitoring of 
compressive strength of specimens were inexorable.

The compressive strength of all cube specimens which has undergone the accelerated oven curing regimes 
and cubes cured under water curing regime as per BS EN 12390-2 (10) were consolidated and tabulated in 
Annex B and their respective few test reports are attached in Annex A.  The cubes cured under water curing 
has been tested for different ages that is 7 days,14 days and 28 days.

A comparison has  been  made between the compressive strength of average accelerated oven cured spec-
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imens at 23 hours from casting and 28 days water cured specimens (See Fig.7and Fig.8). This was done by 
creating two bar graphs to analyse the trend of strength gain for each mix at two different curing tempera-
tures. The two bar graphs are depicted below. All mixes, no matter on OPC replacement, achieved 68MPa+- 
8 after 28 days of curing in ambient temperature (See Fig.7and Fig.8).  The highest compressive strength 
for concrete cubes cured in 50°C was for the highest OPC replacement with GGBFS. Concretes with OPC 
replacement with GGBFS had slightly higher compressive strength compared to OPC when cured in 50°C 
(Fig.7). The same trend was for curing in 70°C, however there was no difference in the compressive strength 
for both 50 and 70% cement replacement. The difference between strength at accelerated curing and curing in 
ambient condition was higher for curing in 50°C and smaller for curing in 70°C, and was noticed as in Table 6.

Fig.7. Comparison between 28 days Compressive Strength Vs Accelerated Oven cured Strength at 50°C

(Mix A - C50 OPC, Mix B - C50-OPC+50%GGBFS, Mix C - C50-OPC+70%GGBFS)

Fig.8. Comparison between 28 days Compressive Strength Vs Accelerated Oven cured Strength at 70°C

(Mix A - C50 OPC, Mix B - C50-OPC+50%GGBFS, Mix C - C50-OPC+70%GGBFS)
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5.Discussion
The discussion of our results has been divided in two main sections. In the first part we emphasize on the 

hydration kinetics in different curing regimes is discussed based on the Isothermal Calorimetry, while the 
second part focuses on prediction of actual compressive strength from accelerated cured concrete strength re-
sults.

a.   The Isothermal calorimetry was conducted on all mixes at two distinct temperatures namely 50 degrees 
and 70 degrees. It was noticed that the heat flow rate is higher in full OPC mix and as the slag content of the 
mix is getting higher the heat flow is also decreasing.  It is clearly depicted on Figure 3 and 4. That is the 
main reason in mass concrete in order to reduce the core temperature of the structural element with the higher 
cement replacement with SCM’s are recommended. The GGBFS hydrates at a slower rate than OPC which 
produces a lower temperature rise. (41)

b.   After the  initial reaction, there is an induction period which is otherwise called dormant period. The 
gypsum in cement is used to prevent flash set, it is usually added 3-5% with respect to seasonal changes and 
retarders are used to prolong the setting time. Hence the induction period of GGBFS mixes is higher than the 
OPC mixes. The induction period would be also higher in mixes containing retarders.

Acceleratory period where you can notice a spike indicating C3S and C2S hydration. Here comes the de-
celeratory period where hydration slows down, in our case its happening after 10 hours in GGBFS mix at 50 
degrees However, in elevated temperature the hydration slows down for around six hours for GGBFS  mixes.  
In  the  case  of  OPC  mixes  deceleration  is  almost  similar,  even  though  in  high temperature  sudden  
deceleration  is  observed.  The  deceleration  period  in  cement  hydration  is  a complex process influenced 
by mineral composition, temperature, and its water-cement ratio. C3S hydrates rapidly initially, leading to ac-
celeration, but slows down as water decreases and  products accumulate. C2S hydrates more slowly and con-
tributes to later-age strength. Elevated temperature accelerates  initial  C3S  hydration  but  can  also  decrease  
product  solubility,  leading  to  pronounced deceleration. Lower temperatures slow down both acceleration 
and deceleration. GGBFS can delay initial hydration and accelerate C2S hydration at elevated temperatures. 
OPC, primarily C3S and C2S, experiences rapid initial hydration followed by deceleration. Elevated tempera-
tures can cause sudden deceleration due to increased product solubility. (42)

In the next phase, gypsum started to deplete and forms monosulphate. The Ettringite (Aft) is the one which 
converts to monosulphate (43) . This phase is called sulphate depletion phase.

c.   The prediction graph is constructed using the compressive strength test data mentioned earlier in order 
to estimate the 28-day compressive strength of Mix A, B, and C. This estimation is based on the compressive 
strength results obtained from accelerated oven cured samples that were subjected to two different curing 
temperatures. The developed prediction model is established as the main goal of this study, and  it  is  noticed 
that  an average strength difference  between accelerated oven cured specimens cured at 70 degrees and cubes 
tested at 28 days is around 21% for Mix B whereas for Mix C it is 19.53%. This number is quite higher in 
Mix A which is 35%.

The  prediction  graph  is  established  and  displayed  below  can  be  used  for  predicting  the  28  days 
compressive  strength  of  concrete  from  accelerated  oven  cured  compressive  strength  results.  In  the 
prediction graph, the target strength is calculated as 59.8 MPa (44). The average Strength gain in 28 days is 
analysed from accelerated oven cured specimens compressive strength is tabulated in Table 6. The trend of 
this strength is clearly visible in Fig.9.



30
     © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the 
Creative Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Artificial Intelligence and Sustainable Materials Vol.1 Mason Publish Group

Table 6. Strength Gain Analysis

Mixes
% of  Average Strength gain in  28 
days  from 50ºC Cured Specimen

% of Average Strength gain in 
28 days from 70ºC Cured 

Specimen

C50-OPC 33.96 29.47

C50-OPC+50%GGBFS 32.75 21.01

C50-OPC+70% GGBFS 27.56 19.53

Fig.9. Compressive Strength Prediction Graph

5. Limitation of the analysis
The scope of this study was limited to a single grade with two different composition of GGBFS under 2  

distinct temperatures only. In order to validate the developed model, future research should investigate the 
accelerated oven curing at 70°C for all grades of concrete with GGBFS compositions ranging from  35% to 
70%.

6. Conclusion
This study is set out to predict the 28 days compressive strength of high slag concrete by establishing the 

accelerated curing regimes. The findings of this investigation are delineated in the subsequent sections.

●    For analysed temperatures and levels of OPC replacement with GGBFS, prediction graph shows the 
evident  correlation  between  the  accelerated  oven  cured  compressive  strength  and  the  28  days com-
pressive strength. By examining the accelerated strength achieved at two distinct temperatures, it is possible 
to anticipate the compressive strength of concrete at 28 days.

●    This study has identified that curing temperature of 70 °C is closer to the 28 days compressive strength.

In other words, the percentage of average strength gained in 28 days from 70 °C cured specimens across 
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all mix types amounts to merely 23.33%. Whereas average strength gained in 28 days from 50ºC cured speci-
mens are 31.42%.

●    The mix of OPC+70%GGBFS tends to achieve greater strength gain in 70 °C curing temperature and 
average strength gained in 28 days from 70ºC is comparatively lower that is 19.53%. Hence Oven curing  
temperature  of  70 °C  can  be  considered  as  regarded  as  the  closest  accelerated  curing temperature for 
high slag concrete.

●    This study observes that  induction  period for Mix C is higher than that of other mixes. However, in 
acceleratory period higher heat releasing is observed on Mix A which is 9.8mW/g for specimens cured at 50 
degrees and 23.2mW/g for specimens cured at 70°C.

Future research should investigate the accelerated oven curing at 70 °C for all grades of concrete with 
GGBFS compositions ranging from 35% to 70%. A thorough examination of the microstructure of concrete 
samples cured in an oven at elevated temperatures is required to ensure that curing at high temperatures has 
no negative effects on the microstructure of cementitious paste.
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Abstract 
Ultra-high-performance  concrete  (UHPC)  exhibits  high  compressive  strength  and good durability. How-
ever, owing to the dense microstructure of UHPC, carbonation curing cannot be performed to capture and 
sequester carbon dioxide (CO2). In this study, CO2 was added to UHPC indirectly. Gaseous CO2 was first 
converted into solid calcium carbonate (CaCO3) using calcium hydroxide, and the converted CaCO3 was 
then added to UHPC at 2, 4, and 6 wt.% based on the cementitious material. The performance and sus-
tainability of UHPC with indirect CO2 addition were investigated through macroscopic and microscopic ex-
periments. The experimental results showed that the method used did not negatively affect the performance 

of UHPC. Compared with the control group, the early strength, ultrasonic velocity, and resistivity of UHPC 
containing solid CO2 improved to varying degrees. Microscopic experiments, such as heat of hydration and 
thermogravimetric analysis (TGA), demonstrated that adding captured CO2 accelerated the hydration rate 

of the paste. Finally, the CO2 emissions were normalized according to the compressive strength and resis-
tivity at 28 days. The results  indicated  that  the  CO2 emissions  per  unit  compressive  strength  and  unit 
resistivity of UHPC with CO2 were lower than those of the control group.

Keywords:  Ultra-high-performance concrete; Microstructure; CO2  absorption.
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1. Introduction
Ultra-high-performance concrete (UHPC) has a low water to cement ratio and a denser microstructure than 

that ordinary concrete. Therefore, its compressive strength and  durability  are  better  than  that  of  ordinary  
concrete [1,2]. In addition, supplementary cementitious materials  (SCMs) with pozzolanic reactivity are 
often added to increase concrete compressive strength and durability [3] [4] [5]. The SCMs most commonly 
used in UHPC has silica fume, fly ash, and blast-furnace slag [6] [7].

Because SCMs are by-products produced by other industries, adding them to concrete can provide both  en-
vironmental protection  and  economic benefits.  Isaia  et  al.  [8] investigated the physical impacts of mineral 
additions and the influence of pozzolan on the performance of UHPC and found that as the concentration of 
mineral additives in UHPC increased, the pozzolanic and physical impacts became more significant.

Ghafari et al. [9] studied the effect of adding SCMs to the self-shrinkage properties of UHPC. The results 
showed that the main factor affecting the property was the total porosity of the paste. In addition, studies have 
found that the inclusion of blast furnace slag and fly ash increased the number of pores in the paste, leading to 
increased autogenous shrinkage [9].

The CO2 concentration in the atmosphere has increased continuously since the 1860s [10][11][12]. Global 
temperatures rise owing to the continuous increase in CO2, resulting in a greenhouse effect [13][14]. The Par-
is Agreement was signed by 175 countries to combat the impact of climate change [10]. An increasing num-
ber of researchers  are  working  to  reduce  CO2  emissions,  and  CO2 capture  and  storage technologies 
have emerged in the cement concrete industry [15][16][17][18][19].

Carbonation  curing  of  cement-based  materials  using   CO2 is one of  the   most commonly used meth-
ods. Carbon curing has many advantages and can improve the compressive  strength  and  durability  of  con-
crete   and  prevent   sulfate  attack  and chloride-ion penetration [20][21][22].

Based  on  the  literature  studies,  the  research  gaps  of  previous  works  are summarized as follows: first, 
carbonation curing is only suitable for precast concrete components. For cast-in-place concrete components, 
the carbonation-curing method is no longer practical. Second, the current research on concrete carbonation 
curing is limited to thin concrete specimens; completely carbonizing large-volume concrete in a short time is 
challenging. Additionally, excessive carbon curing can destroy the main hydration product (CSH) inside the 
concrete, thereby reducing the strength of the concrete [23]. In addition, concretes that can be cured by car-
bonation have high water to cement ratios (approximately 0.5) [24] [25]. Owing to the dense microstructure 
of UHPC, the low porosity prevents CO2  from entering the paste interior. Therefore, UHPC cannot be car-
bonized and solidified.

In this study, an absorbent was used to absorb CO2  and transform gaseous CO2 into a solid. The absorbed 
CO2 was then added to a UHPC as an admixture. Calcium hydroxide (CH) was used to convert gaseous CO2  
into solid CaCO3  (CC), which was added  to  UHPC  at  2,  4,  and  6%  based  on  cementitious  material.  
First,  the compressive,  flexural, and ultrasonic  strengths  and resistivity of the mortars were investigated.   
Second,   the   hydration    heat   of   the   paste    was   determined;    its microstructure was characterized by 
thermogravimetric analysis (TGA),  attenuated total  reflectance  Fourier  transform  infrared  spectroscopy  
(ATR-FTIR),  and  X-ray diffraction  (XRD).  Third,  the   CO2    emissions  per  unit  volume   of  UHPC  
were calculated, and normalized according to the compressive strength and resistivity at 28 days. The follow-
ing points were researched and assessed based on macroscopic and microscopic experiments: (1) the effect of 
CC on the macroscopic properties of the mortars in the early stage was investigated based on the heat of hy-
dration of the paste; (2) the microstructural changes of the paste in the early and late stages were studied, and 
the development of the strength, ultrasonic wave, and resistivity of the mortars was analyzed combined with 
the microscopic analysis; (3) the UHPC sustainability was analyzed based on its compressive strength and 
resistivity.

The novelties and significances of this study are summarized as follows: based on the transformation of 
gaseous  CO2   into  solid  calcium  carbonate, the proposed method  can  be  used  to  produce  both  precast  
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concrete  and  cast-in-site  concrete.

Moreover,  because  conversed  solid  calcium  carbonate  is  added  into  the  mixture during the mixing 
process, the slow diffusion process of CO2  from the environment to the inside of the specimen is avoided, 
and the proposed method is valid for high-strength  concrete  with  low  porosity.   Moreover,  the  life  cycle  
analysis  process considers the CO2  emission from reactants of solid calcium carbonate production.

Although abundant works have been done about blended concrete containing calcium carbonate, to the best 
knowledge of authors, the transformation of gaseous CO2  into solid calcium carbonate and its utilization in 
UHPC has not been done.

2. Experimental

2.1 Raw materials
The  CH used to prepare  CC  was purchased  from  Daejung  Chemical  Co.,  Ltd. Commercially  avail-

able   100%  CO2   was  used  in  this  study.  CC  was  prepared according to the method described by Qin 
et al.  [26].  First, CH was dissolved in deionized water to obtain a CH solution. Second, CO2  was fed into 
the CH solution at a rate of 20 L/min until the pH of the suspension reached approximately 7, and the solute 
of the suspension in the container was nano-CaCO3. Third, a centrifuge was used to  separate the nano-Ca-
CO3   suspension  from liquid  and  solid. The collected CaCO3 was dried at 200 °C for 24 h to evaporate the 
water. Finally, the dried CaCO3 was ground into powder using an agate mortar. Gaseous CO2 transformation 
into solid CaCO3    was   realized   through   CaCO3    preparation.   The   prepared   CaCO3 was submicron. 
Unlike nanomaterials, submicron CaCO3  cannot cause excessive loss of fluidity, which is convenient for en-
gineering applications.

The microstructure of the prepared CC powders was characterized by ATR-FTIR and  ultrahigh-resolution  
scanning  electron  microscopy  (UHR-SEM),  as  shown  in Figure  1.  Figure  1  shows  the  ATR-FTIR  
spectrum  of the  CC.  A pronounced  CC absorption peak was found; however, the presence of CH was not 
detected. The CC was cubic with an average side length of approximately 300 nm, as shown in the SEM im-
age in Figure 1b.

Figure 1. (a) FTIR spectra and (b) SEM of the CaCO3 powder.

The Portland cement (OPC) used in this study was a Korean Sungshin portland cement, conforming to the 
Korean standard KS L 5201. The silica fume (SF) was purchased from the Korean company Boram Chemi-
cal. Table 1 shows the chemical compositions of OPC, CC, and SF from X-ray fluorescence measurements. 
Figure 2 shows the cumulative particle size distribution curves. The median particle sizes (d50) of OPC, CC, 
and SF was 17.3, 2.99, and 1.23 μm, respectively.
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Table  1.  Chemical  compositions  (wt.%)  of  cement  (OPC),  silica  fume  (SF),  and CaCO3(CC).

OPC SF CC

SiO2 20.70 96.00 -

Al2O3 5.09 - -

Fe2O3 2.56 0.39 -

CaO 63.52 0.32 55.17

MgO 2.14 1.18 -

TiO2 0.26 - -

SO3 2.45 0.26 -

P2O5 0.19 0.17 -

K2O 0.90 0.76 -

MnO 0.07 - -

ZnO 0.05 0.16 -

LOI1 2.05 0.78 44.80
1 Loss on ignition.

Figure 2. Cumulative volume of cement (POC), silica fume (SF), and CaCO3  (CC).

2.2 Mix proportions
The paste and mortar samples prepared for this study are listed in Table 2. Pure paste was used for the hy-

dration heat and microscopic characterization experiments. Mortar was used for macro tests, such as strength 
and non-destructive testing. The water-binder ratio (w/b) of both the paste and mortar samples was 0.2, the 
value widely used to prepare UHPC.  The binder-mortar ratio  (b/s) was  1.  The  mixture without CC was 
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used as the control (CC0). The prepared CC was added at 2, 4, and 6%  of  the   cementitious   material;  the   
cement   and  silica  fume  contents  were simultaneously reduced in proportion. In addition, the amount of 
superplasticizer (SP) was the same for all the mix ratios (2 %).

Table 2. Experimental mix proportions based on the binder (wt.%).

NO. OPC SF CC Water SP Sand

CC0 85 15 0 20 2 100

CC2 83.3 14.7 2 20 2 100

CC4 81.6 14.4 4 20 2 100

CC6 79.9 14.1 6 20 2 100

2.3 Test methods
Before the mortar and paste were mixed, the CC and water required  for the experiment   were   first    add-

ed   to   the    container,   mixed,   and    dispersed   using ultrasonication waves. After the dispersion was 
complete, the mix was poured into the dry-mixed cement and silica fume. Finally, the mixture was mechani-
cally stirred.

2.3.1 Heat of hydration

A TAM Air isothermal calorimeter was used to measure the hydration heat release rate at 20 °C for 72 
hours. After the paste was mixed, 5 g of the paste was weighed into  an  ampoule  bottle  and  immediately  
placed  in  the  TAM  Air  isothermal calorimeter. Because the specific heat capacity of glass is similar to that 
of cement, glass was used as the specific heat capacity control material during the tests [27].

2.3.2 Mechanical properties

The  compressive  strength  tests  were  performed  according  to  the  ASTM  C349 standard [28]. The size 
of the cube mold used in the test was 50 × 50 × 50 mm3, and the test was conducted at curing ages of 3, 7, 
and 28 days. According to the ASTM C78 standard [29], a 40 × 40 × 160 mm3  cuboid sample is used to con-
duct a three- point bending test when the curing age is 28 days. Three samples were tested for each mixing 
ratio, and the results were averaged.

2.3.3 Non-destructive testing

Ultrasonic testing was performed using a portable non-destructive digital indicator produced by the  Swiss  
company Proceq. Longitudinal P-wave velocity tests were performed according to ASTM C597 [30] at cur-
ing ages of 3, 7, and 28 days. The test sample was a cuboid with dimensions of 40  × 40 ×  160 mm3. Three 
samples were tested for each mixing ratio, and the results were averaged.

The resistivity test was performed using  a portable nondestructive resistivity tester  (Proceq,  Switzerland).  
According  to   the  AASHTO   T   358  standard  [31], resistivity experiments were conducted on cylinders 
with dimensions of Φ100 × 200 mm at curing ages of 3, 7, and 28 days. Each sample was tested thrice, and 
the results were averaged.

2.3.4 Microscopic characterization

Test  samples  for  thermogravimetric  analysis  (TGA),  XRD,  and  FTIR  were dehydrated  by  solvent  
exchange   [32].  Manual  grinding  with  a  small  amount  of isopropyl alcohol was performed in an agate 
mortar to prevent carbonation during the grinding. After grinding, the mixture was poured into a beaker, and 
isopropanol that is approximately four times the mass of the mixture was added; the mixture was allowed 
to  stand  for   10  min.  The  suspension  was  then  filtered  and  washed  four  times alternately with isopro-
panol and diethyl ether. Finally, the filtered powder was dried in a vacuum drying oven. The tests were per-
formed the following day.
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TGA was performed using an SDT Q600 TA Instruments instrument with a ramp rate of 10 °C/min to mea-
sure mass loss in the range 20–1000 °C. Anitrogen purge at a gas flow rate of 100 mL/min was used during 
the test. XRD was performed using an X'Pert-pro MPD diffractometer from  5 to  70°  (2θ) in  steps  of 0.013° 
. ATR-FTIR experiments were performed using a Frontier spectrometer (PerkinElmer) in the scan range 500–
4000 cm-1, scanning each sample 16 times.

3. Results and discussion

3.1 Heat of hydration
Figures 3a and 3b show the 7-day heats of hydration  and cumulative hydration, respectively. The start time 

of the acceleration period occurred earlier in the pastes with CC addition than in the control group (CC0), as 
seen in the enlarged view in Figure 3a. The time to peak of heat flow gradually moved forward with an in-
creased CC addition. As also seen in the enlarged view in Figure 3b, the cumulative heat release of the mixed 
paste with added CC was higher than that of the control group (CC0) in the early stage of hydration (before 
40 h). CC accelerated the hydration rate of the paste, which was attributed to the dilution and nucleation ef-
fects of CC  [33].

Because the cement content in CC4 and CC6 pastes was lower than that in CC0, the cumulative heat re-
lease of CC0 gradually exceeded that of CC2, CC4, and CC6 at approximately 36 h. This heat release differ-
ence suggested that the physical action (filling effect) produced by CC had a significant impact only in the 
early stages of hydration. Figure 4 shows the normalized heat of hydration and the cumulative heat based on 
the cement. The heat of hydration of the mixed paste with added CC was higher than that of the control group 
because the filling effect (dilution effect nucleation effect) produced by CC enhanced the hydration reaction 
of the cement [34].

Figure 3. (a) Heat of hydration and (b) cumulative heat of pastes based on the binder.
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Figure 4. Normalized heat of hydration and cumulative heat based on the cement plus silica fume.

3.2 Mechanical properties
The compressive (3, 7, and 28 days) and flexural strength (28 days) test results of the mortars are shown in 

Figure 5a. Figure 5b shows the normalized compressive strength of the mortars with CC0 as the benchmark. 
From Figure 5a, the compressive strength of the mortars added with CC was higher than that of the control 
group CC0 when the curing age was 3 d. Adding 2 and 4% CC significantly improved the 3-day compres-
sive  strength  of the  mortar.  The  compressive  strengths  of  CC2  and  CC4 reached 71.91 and 72.71 MPa, 
respectively. The 3-day compressive strength of the mortars increased because of the filler and nucleation 
effects caused by the addition of CC [29]. The presence of CC improved particle packing and refined the 
internal pores of the mortar. CC provided nucleation sites for hydration products, accelerating the mortar 
hydration rate [35] [36]. The heat of hydration results also  showed that the presence of CC accelerated the 
paste hydration rate. Notably, the 3-day compressive strength values of CC6 were very close to those of the 
control group. The physical effect  produced  by  adding  CC  contributed  to  the  development  of  the   ear-
ly compressive strength of the mortar. However, the reduction in hydration products due to the decreased 
cement and SF content also significantly affected the development of the compressive strength in the middle 
and late periods (7 days and 28 days). When the curing age reached 28 days, the compressive strength of CC2 
was slightly higher than that of the control group (112.94 MPa). The compressive strengths of both CC4 and  
CC6  were  lower  than  that  of  CC0.   Similar  findings  have  been  reported previously[37] [38]. Kang et 
al.[39] found that the presence of LP in the paste led to capillary pores of approximately  10 nm, leading to a 
decreased UHPC compressive strength in the middle and late stages (28 days). With an increased curing age, 
the gradual weakening of the physical effect of CC may have been one of the reasons.

In addition to physical impacts, CC has chemical effects and a coupling effect with aluminum-rich SCMs 
[40]. However, aluminum-rich SCMs were not added in this study; thus, CC did not significantly contribute 
to developing the compressive strength in the middle and late stages ofthe mortar. Figure 5b further shows 
that when compared to the control group CC0, the normalized compressive strength percentage of the mortar 
supplemented with CC steadily declined with increasing curing age. With an increased CC addition, the nor-
malized compressive strength percentage of the mortar decreased significantly.

The results for the 28-day flexural strength test of the mortar are shown in Figure 5a. The flexural strength 
of CC0 in the control group was the lowest at 10.12 MPa;the flexural strength of CC2 was the highest at 
11.74 MPa. A correlation analysis was performed on the cumulative heat release and compressive strength for 
3 and 7 days, as shown in Figure 6. An excellent linear relationship between them (R2 = 0.932) was observed.
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Figure  5.  (a)  Compressive  and  flexural  strength;  (b)  normalized  compressive strength of the samples.

Figure 6. Compressive strength and cumulative heat relationship.
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3.3 Ultrasonic pulse velocity
Figure 7 shows the ultrasonic pulse velocity (UPV) results after 3, 7, and 28 days.When the curing age was 

3 days, the UPV of CC0 was 4.348 km/s, and the UPV of the mortars with added CC was higher than that of 
CC0. CC4 had the highest UPV (4.469 km/s). The addition of CC produced filler and dilution effects. The 
presence of CC  improved  particle  packing,  refined  the  internal  pores  of  the   mortar,  and accelerated the 
mortar  hydration  rate.  The  resulting  hydration  products  made  the microstructure of the mortar denser [39] 
[41]. With an increased curing time, the UPV of the mortar also gradually increased. At 7 days, the UPV of 
the mortar with added CC was still higher than that of the control CC0. However, compared with the control 
group, the UPV of the mortars with added CC was only approximately 0.84–1.31% higher than that of CC0. 
When the curing age reached 28 days, the UPV of CC6 was lower than that ofCC0.

The   UPV   growth    rate   was   calculated   using   the    following   formula    (1):

Growth rate of  UPV (%) =  ×100                                                         (1)

where UT and U3d are the UPV values when the curing age is 7 or 28 days and 3 days,  respectively.  The  
results  are   shown  in  Figure   8a.  With  an  increased  CC substitution,  the  growth  rate  of  UPV  gradu-
ally  decreased.  Adding   CC  had  a significant effect on the mortars in the early stage, accelerating the hy-
dration rate and making the interior of the mortar dense through the hydration products produced [35]. With 
an increased curing time, the physical effect of CC in the early stage gradually decreased. On the contrary, 
the effect of decreased cement and SF content gradually became  significant.  In  addition,  a  quantitative  
correlation  analysis  was  performed between the growth rate of UPV and CC content, as shown in Figure 
8b. An excellent linear relationship between the growth rate of UPV and CC content was observed, and the  
growth  rate  of  UPV  decreased  with  increased  CC  content.  In  addition,  the coefficient of determination 
(0.958) between the growth rate and CC content of UPV from 3 to 28 days was higher than the coefficient 
of determination (0.845) between the growth rate and CC content of UPV from 3 to 7 days. The differences 
proved that CC had an effect on the UPV development of mortar in the early stage, with the effect gradually 
decreasing with increasing curing time. 

Solid hydration products have a significant effect on the development of mortar UPV; the development of 
compressive strength is also affected by the content of the solid hydration products. Figure 9 shows the quan-
titative correlation analysis between the compressive strength and UPV. There was an excellent exponential 
relationship between compressive strength and UPV in this study (R2 = 0.897).

Figure 7. Ultrasonic pulse velocity results.
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Figure  8.  (a) Ultrasonic pulse velocity growth rate  at  3-7 and 3-28 days;  (b) the relationship between UPV 
growth rate and CC content.

 

Figure 9. Relationship between ultrasonic pulse velocity and compressive strength.

3.4 Electrical resistivity
The resistivity test results at 3, 7, and 28 days in this study are shown in Figure 10a.When the curing age 

was 3 days, the resistivity of the mortar was between 19.5 and 26.95 kΩ·cm; the resistivity of CC0 was the 
smallest (19.5 kΩ·cm), and the resistivity of CC6, the most CC content, was the largest (26.95 kΩ·cm). With 
increased curing age, the resistivity of mortar at 28 days ranged from 389.5 to 445 kΩ·cm. Notably, the resis-
tivity increase of all mortar samples was slight from 3 to 7 days. A significant increase in resistivity from that 
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of 7 days curing was observed when the curing time reached 28 days. The growth rate of the resistivity was 
calculated using the following formula (2):

Growth rate of  ER (%) =  ×100                                                      (2)

where RT is the resistivity when the curing is 7 or 28 days, and R3d   is the resistivity when the curing is 3 
or 7 days. The results are shown in Figure 10b. The resistivity growth rate in the middle and late periods (7-
28 days) was much higher than that in the  early  and  middle  periods  (3-7  days)  because  the  pozzolanic  
reaction  of  SF produced more CSH in the middle and late stages, making the internal microstructure of the 
mortar denser  [42]. In addition, as shown in Figure  10b, with increased  CC content, both the 3–7 and 7–28 
days resistivity growth rates of the mortar gradually decreased. The trend may be due to the reduced cement 
and SF content.

The resistivity of the CC-added mortar was normalized to that of the control group (CC0), as shown in 
Figure 10c. As the curing time increased, the resistivity difference between  the  mortars  became  less  signif-
icant.  After  3  days,  the  resistivity  of the mortars with added CC was higher than that of CC0. The resis-
tivity of the mortars also gradually increased with increasing CC content. The resistivity of the mortars with 
added CC was 21.8–38.21% higher than the control group, which was attributed to the physical action of CC 
(filler and dilution actions) [43]. With an increased curing time, the effect of the physical action of CC on the 
resistivity of the mortars gradually decreased. At 7 days, the resistivity of the mortars with added CC was 
18.82–26.4% higher  than  that  of the  control  CC0.  When  the  curing  age  reached  28  days,  the resistivi-
ty of the mortars with added CC was only  1.28–14.25% higher than that of CC0.



45
    © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the 
Creative Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Artificial Intelligence and Sustainable Materials Vol.1Mason Publish Group

Figure 10. (a) Electrical resistivity test results; (b) electrical resistivity growth rate at 3–7 and 7–28 days; (c) 
electrical resistivity normalized to the resistivity of CC0.

3.5 XRD
Figures  11a  and  11b  show  the XRD patterns measured  at 3 and 28-day curing, respectively.  The  CH  

diffraction  peak  of  the  paste  increased  gradually  with  an increased  amount  of  CC,  consistent  with   
the  results   of  the  heat   of  hydration experiment,  in  which   CC  accelerated  the  hydration  rate  of  the  
paste.  With  an increased  CC  addition,  the  diffraction  peaks  of  CC  also  increased.  In  addition, because  
the  Korean  cement  used  in  this  study  contained  2–3%  CaCO3   [44],  the diffraction peaks  of CC was  
also  observed  in the XRD pattern of CC0. With an increased  curing  time,  the   crystalline  phase   in  the  
paste   changed   significantly.

Compared to the XRD pattern of the paste after 3 days, the diffraction peaks (2θ = 9.1 and  15.9°)  of  
ettringite  in  the  paste  increased   significantly  after  28  days.  The diffraction  peaks  of  hemicarboalumi-
nate  (Hc)  and  monocarboaluminate  (Mc)  are shown in Figure 11b. According to a previous study [45], CC 
was beneficial for the production of carboaluminate and ettringite, as shown in reaction (3).

3(3CaO. Al2 O3 ) . CaSO4 .12 H2 O+ 2 CaCO3 +18 H2 O                                    (3)

→ (3CaO. Al2 O3 ) . CaCO3.11H2 O+ (3CaO. Al2 O3 ) .3CaSO4·32 H2O

Comparing Figures 11a and 11b, the intensity of the diffraction peaks caused by the C3S and C2S in the 
pastes decreased as the curing time increased. Compared with the XRD pattern of the paste after 3 days, the 
diffraction peaks of CH (2θ =  17 and 34°)

at 28 days were significantly reduced. The reduction may be due to some CH being consumed by the poz-
zolanic reaction in SF in the middle and late stages.
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Figure 11. XRD patterns of the pastes at (a) 3 days and (b) 28 days. E = Ettringite; H = Hemicarboaluminate; 
M = Monocarboaluminate; CH = calcium hydroxide; CC = Calcium carbonate.

3.6 ATR-FTIR
Figures 12a and 12b show the ATR-FTIR spectra of the pastes after 3 and 28 days of curing, respectively. 

The absorption peak caused by the OH- (ν) stretching vibration in CH appeared at 3641 cm-1  [46] [47]. The 
CH-  absorption peak at 28 days for the  paste in Figure 12b was very small compared to that in Figure 12a, 
consistent with the  XRD results because of the pozzolanic reaction in the SF in the middle and late stages.  

The broad peak at  1451 cm-1  was caused by the asymmetric stretching vibration of CO32- (ν3) in CaCO3  
[48]. In addition, the absorption peaks at 877 and 715 cm-1  were  caused  by  the  out-of-plane  bending  
vibrations  of  CO32-    (ν2  and  ν4)  and  CaCO3,  respectively [46] [47]. The absorption peak caused by 
CO32-  increased with increased  CC content in the paste. In addition, the absorption peaks caused by CO32-  
decreased  with an increased curing age because part of the CC and aluminate generated Hc and  Mc, which 
was also observed in the XRD patterns. The absorption peak at  1116 cm-1  was caused by SO42-  (ν3) 
stretching vibration [48] [49]. As shown in Figure 12a, the absorption peak of the CC-added paste was sig-
nificantly larger than that of CC0. In addition, compared with that at 3 days, the SO42-  absorption peak of 
the paste at 28 days  decreased  significantly  with  an  increased  curing  time.  The  absorption  peak caused 
by the SiO42- (ν3) asymmetric stretching vibration of CSH appeared at 952 cm- 1   [46].  From  Figure   12a,  
the  absorption  peak  of  the  paste  containing  CC  was significantly larger than that ofCC0 because the 
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physical action early produced by the CC accelerated the hydration rate of the paste. In addition, comparing 
Figures 12a and 12b, it can be observed that the absorption peak at 952 cm-1  increased as the curing time 
increased.

Figure 12. ATR-FTIR spectra of the pastes at (a) 3 and (b) 28 days.

3.7 TGA
Figures 13a and 13b show the results of the TG analysis of the pastes at 3 and 28 days. Three stages of 

weight loss was be observed: (1) hydration product (calcium silicate  hydrate,  AFt,   and  AFm)   decomposi-
tion  (100–200  °C)[50],  (2)  calcium hydroxide decomposition (400–500 °C)  [50], and (3) CaCO3  decom-
position  (600– 750 ℃)[32]. During the first weight-loss stage, the hydration products formed in the paste 
containing CC were higher than those of the control group CC0, and the peak weight loss increased with in-
creased CC addition, as seen in Figure 13a. In addition, in the second stage, it was found that the CH content 
in the paste with added CC was also higher than that of CC0, confirming that the CC had a physical effect in 
the early stages,  which  accelerated  the  hydration  rate  of  the  paste.  When  the  curing  time reached  28  
days,  the  decomposition  peak  of  the  hydration  products   increased significantly during the first stage of 
weight loss. With an increased curing time, the continuous hydration of cement generated more hydration 
products. In addition, the pozzolanic  reaction  of  SF  consumed  CH,  generating  a  large  amount  of  cal-
cium silicate hydrate. In Figure 13b, the CH decomposition peak at approximately 450 °C was significantly 
lower than that at 3 days. In addition, the decomposition peak of the CCO paste at about 120 °C exceeded 
that of the paste containing CC. This was due to the reduced cement content in the CC-containing pastes. 
The presence of CC can accelerate the hydration rate of the paste in the early stage; however, because of the 
extremely low reactivity  of CC,  a  large  number  of hydration  products  cannot  be generated in the middle 
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and later stages of hydration.

The  chemically  bound  water  content  was  calculated  according  to  the  method described by De Weerdt 
[51], as shown in Equation (4):

Wb  =  ×100%                                                                                      (4)

The results are shown in Table 3. At 3 days, the chemically bound water content in the paste increased with 
the CC content. Initially, CC accelerated the hydration rate of the paste; thus, the hydration products also 
increased. At day 28, the chemically bound water of CC0 increased significantly compared to that at day 3. 
With an increased curing  time,  the  cement  continued  to  undergo  a  hydration  reaction,  and  SF  also 
experienced   a   pozzolanic    reaction;   thus,    the    hydration   products    increased significantly. In the 
middle and late stages, the physical effect of the CC gradually decreased,  and  the  influence  of  decreased  
cement  content  in  the  paste  gradually increased.  A  quantitative  correlation  analysis  between   compres-
sive   strength  and chemically  bound  water  (Wb)  was  also  performed,  as  shown  in  Figure   14.  An 
excellent linear relationship was observed between them (R2 = 0.933).

Table 3. Chemically bound water content in the pastes (%).

Curing time CC0 CC2 CC4 CC6

3 days 11.84 12.26 12.29 12.82

28 days 15.85 16.08 14.81 14.50

Figure 13. TGA and DTG curves for the pastes at (a) 3 and (b) 28 days.
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Figure 14. Relationship between Wb and compressive strength.

3.8 Sustainability
The  CO2   emission  for  the production  of calcium  carbonate  is  determined  as follows.  The CO2  

emission per kilogram of CH is 0.528 kgCO2/kg  [52]. When CH was used  to prepare  CC  in  this  study,  
the  chemical  reaction  formula  (5)  was  as follows:

Ca(OH)2 + CO2  → CaCO3 + H2 O                                                             (5)

One kilogram of CC consumes 0.74 kg CH and 0.44 kg CO2 ; thus, the CO2  emission factor ofCC is  
0.74×0.528 — 0.44= - 0.04928kg·CO2/kg .

CO2 emissions are currently a topic of concern, and the addition of SF and CC in concrete has a positive 
effect in reducing CO2  emissions. Therefore, the CO2  emission reduction capacity of UHPC was calculated. 
The CO2  emissions per cubic meter of concrete were calculated according to the method described by Zhang 
et al. [53], as shown in formulas (6) and (7):

                                                                                                      (6)

                                                                              (7)
where  ρi   represents the specific gravity of the raw materials; Mi  is the mass of raw materials (kg/m3), as 

shown in Table 4;  CO2/ m3   represents the CO2  emissions per cubic concrete; CO2(i)  represents the CO2  emis-
sions per kilogram of raw material, as shown in Table 5.

Table 4. The mass of the different components and CO2  emissions of mortars.

NO.

Mass of raw materials (kg/m3) CO2      emissions 
(kg·CO2/m3)OPC SF CC Water SP Sand

CC0 910.57 160.69 0.00 214.25 21.43 1071.26 790.90

CC2 891.67 157.35 21.41 214.09 21.41 1070.44 773.49

CC4 872.80 154.02 42.78 213.92 21.39 1069.61 756.10

CC6 853.96 150.70 64.13 213.76 21.38 1068.79 738.74
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Table 5. CO2  emission factors for raw materials[54] [55].

OPC SF CC SP Water Sand
CO2    emission  factor (kg.

CO2/kg)
0.863 0.014 -0.04928 0.0016 0.000196 0.0026

The  calculation  results  of  CO2/ m3     are  shown  in  Table  4.  The  CO2   emissions decreased with the 
addition of CC. This is predictable because the substitution of CC reduces the use of other raw materials, and 
the CO2  emissions per unit of CC are negative.

The CO2  emissions of the mortars were compared with the compressive strength and resistivity (durability 
performance) at 28 days to better understand the long-term performance of the concrete. The CO2  emissions 
per unit compressive strength and resistivity were computed using Equations (7) and (8), respectively.

                                                                                        (7)
                                                                      
        

                                                                                                                  (8)

The  calculation  results  of  CO2-c    (CO2   emission  per  unit  compressive  strength, kg·CO2/MPa)  and  
CO2-e     (CO2 emission  per  unit  resistivity,  kg·CO2/kΩ·cm)  are shown  in  Figure  15.  The  CO2-c    and  
the  CO2-e    of the mortar with  CC  were both smaller than those of CC0. The  CO2-c   of CC2 was the 
smallest at 6.85 kg·CO2/MPa. Because the addition of CC diminished the later compressive strength of the 
mortar, the CO2-c   of CC4 was equivalent to that of CC0. Compared to the control group, the CO2-e   of the 
mortar supplemented with the different CC additions reduced by 9.36, 16.26,  and  7.88%,  respectively.  CC4  
exhibited  the  lowest  value  at  only  1.70 kg·CO2/kΩ·cm.

Based  on  the  results,  the  addition  of  CC  to  the  mixture  had  dilution  and nucleation effects,  acceler-
ating the hydration reaction rate  and  contributing to the early compressive strength development. However, 
with an increased curing time, the physical effect of CC gradually decreased. Simultaneously, the effect of 
reducing the cement and silica fume content gradually increased (decreased hydration products).

The decrease in hydration products decreased the compressive strength and resistivity of the mixtures with 
high CC content when the curing age reached the middle and late stages. However, adding CC reduced the 
CO2  emissions of the mixture, and a high amount  of  CC   affected  the  later  development   of  the  com-
pressive   strength  and resistivity of the mixture. Therefore, when the compressive strength and resistivity 
were considered simultaneously, adding CC within 4% was the most cost-effective. It can  also  ensure  that  
the  mechanical  properties  and  durability  of the  mixture  are maintained while minimizing CO2  emis-
sions.

Figure  15.  CO2    emissions  per  unit   of  electrical   resistivity  and   compressive strength.
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4. Conclusion
This study investigated the addition of CO2  to UHPC using an indirect addition method. Gaseous CO2  

was first converted into solid CaCO3  and then added to the UHPC.    The    performance    and    sustainabil-
ity    of    UHPC    were    investigated  experimentally.  The  mortars  were  tested  for  their  compressive  
strength,  flexural strength, ultrasonic strength, and resistivity. The heat of hydration and microstructures of 
the pastes were also characterized. The following conclusions were drawn from the test results.

(1)       The hydration heat and strength test results showed that adding CO2  converted into a solid (cal-
cium carbonate) accelerated the early hydration rate of UHPC, contributing to improved early compressive 
strength. After normalizing the compressive  strength  based  on  the  control  group,  it  was  found  that  the 
percentage  of  compressive   strength  of  the  UHPC   sequestered  with   CO2 gradually decreased with in-
creased curing age.

(2)       UPV  experiments   showed  that  the  physical   effect  of  adding  CO2    (CC) converted into  a  
solid gradually decreased  during the  early stage. With an increased curing time, the UPV growth rate de-
creased with an increased CC content. Moreover, an excellent exponential relationship between UPV and 
compressive strength (R2 = 0.897) was observed.

(3)       The  surface resistivity tests showed that the resistivity growth rate (1244.2– 1750.8%) of UHPC in 
the middle and late stages (from 7 to 28 days) was much higher than that  in  the  early  and  middle  stages  
(from  3  to  7  days) (119.7–146.7%);  however,  the  resistivity  difference  between  the  mortars became 
less significant as the curing time increased. Adding CC converted into a solid-state significantly affected the 
early resistivity. However, in the middle and late stages, cement hydration and the pozzolanic reaction of SF 
had a more significant impact on the resistivity of the mortar.

(4)       The XRD and FTIR test results showed that the pozzolanic reaction of SF had a gradually signifi-
cant effect on the paste in the middle and late stages. In addition, at 28 days, the presence of Hc and Mc was 
observed in the XRD pattern owing to the chemical reaction of CC with the aluminum phase in the cement.

(5)       The results of the TGA experiments  showed that the decomposition peak of CSH increased with an 
increased CC content at 3 days. This indicated that CC accelerated the hydration rate of the paste. In  addi-
tion,  an  excellent  linear relationship between chemically bound water and compressive strength (R2  = 0.933) 
was observed.

(6)       Compared  with  the control group, the CO2  emissions per unit compressive strength and per unit 
resistivity of the mortar added with CC decreased to varying degrees, suggesting indirect capture and storage 
of CO2  in UHPC was feasible.  In  addition,  when  the  compressive  strength  and  resistivity  were consid-
ered simultaneously, the addition of CC within 4% was the most cost- effective.  The  mechanical  properties   
and  durability  of  the  mixture   were maintained while minimizing the CO2  emissions.

Acknowledgement
This  study  was  supported  by  the  National  Research  Foundation  of  Korea  (grant number NRF-

2020R1A2C4002093).

Author contributions
Yi-Han:  Conceptualization,  Methodology,  Investigation,  Data  curation,  Writing   - review & editing.

Run-Sheng Lin: Investigation, Writing - review & editing.

Xiao-Yong  Wang:  Conceptualization,   Supervision,  Validation,  Resources,  Project administration, 
Funding acquisition, Writing - review & editing.



52
     © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the 
Creative Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Artificial Intelligence and Sustainable Materials Vol.1 Mason Publish Group

Conflict of interest
The authors state no conflict of interest.

References
He Z H, Shen M L, Shi J Y, Yalcinkaya C, Du S G,Yuan Q. Recycling coral waste  into  eco-friendly  
UHPC:  Mechanical   strength,  microstructure,   and environmental   benefits.   Sci    Total   Environ.    
2022;   836:    155424.    dio: 10.1016/j.scitotenv.2022.155424.
Huang H, Gao X,Khayat K H. Contribution of fiber orientation to enhancing dynamic properties  of 
UHPC under impact  loading.  Cement  and  Concrete Composites. 2021; 121: 104108. dio: 10.1016/
j.cemconcomp.2021.104108.
Ren M, Wen X, Gao X,Liu Y. Thermal and mechanical properties of ultra-high performance  concrete  
incorporated  with   microencapsulated  phase   change material.  Construction  and  Building  Materials.   
2021;   273:  121714.  dio: 10.1016/j.conbuildmat.2020.121714.
Mo  Z,  Gao  X,Su  A.  Mechanical  performances  and  microstructures  of metakaolin   contained   
UHPC    matrix    under    steam   curing   conditions. Construction    and    Building     Materials.     
2021;     268:     121112. doi:10.1016/j.conbuildmat.2020.121112.
Harrison E, Berenjian A,Seifan M. Recycling of waste glass as aggregate in cement-based  materials.  
Environmental  Science  and  Ecotechnology.  2020; 4:dio: 10.1016/j.ese.2020.100064.
Bajaber M A,Hakeem I Y. UHPC evolution, development, and utilization in construction: a review. 
Journal of Materials Research and Technology. 2021;
10: 1058-1074. dio: 10.1016/j.jmrt.2020.12.051.
Zhang G Y, Ahn Y H, Lin R S,Wang X Y. Effect of Waste Ceramic Powder on Properties of Alkali-
Activated Blast Furnace Slag Paste and Mortar. Polymers (Basel). 2021; 13: 13162817. dio: 10.3390/
polym13162817.
Isaia G C, GASTALDInI A L G, Moraes R J C,composites c. Physical and pozzolanic action of mineral 
additions on the mechanical strength of high- performance concrete. 2003; 25: 69-76.
Ghafari E, Ghahari S A, Costa H, Júlio E, Portugal A,Durães L. Effect of supplementary cementitious 
materials on autogenous shrinkage of ultra-high performance concrete. Construction and Building 
Materials. 2016;  127: 43- 48. dio: 10.1016/j.conbuildmat.2016.09.123.
Liu  Z,Meng  W.  Fundamental  understanding  of  carbonation   curing   and durability of carbonation-
cured cement-based composites: A review. Journal of CO2 Utilization. 2021; 44: 101428. dio: 10.1016/
j.jcou.2020.101428.
Liu B, Qin J, Shi J, Jiang J, Wu X,He Z. New perspectives on utilization of CO2 sequestration 
technologies in cement-based materials. Construction and Building Materials. 2021; 272:  121660.  
dio:10.1016/j.conbuildmat.2020.121660.
He  J,  Li  Z,  Zhang  X,  Wang  H,  Dong  W,  Du  E,  et  al.  Towards  carbon neutrality: A study 
on China's long-term low-carbon transition pathways and strategies. Environmental Science and 
Ecotechnology. 2022; 9:  100134. dio: 10.1016/j.ese.2021.100134.
Duan L, Hu W, Deng D, Fang W, Xiong M, Lu P, et al. Impacts of reducing air pollutants  and  CO2  
emissions  in  urban  road   transport  through   2035   in Chongqing,  China.  Environmental  Science  
and  Ecotechnology.   2021;   8: 100125. dio: 10.1016/j.ese.2021.100125.
Tian  S,  Wang  S,  Bai X,  Luo  G, Li  Q, Yang Y,  et  al.  Global patterns  and changes of carbon 
emissions from land use during 1992–2015. Environmental Science and Ecotechnology. 2021; 7: 
100108. dio: 10.1016/j.ese.2021.100108.
Di   Maria   A,   Snellings   R,   Alaerts   L,    Quaghebeur   M,Van   Acker   K. Environmental 
assessment of CO2 mineralisation for sustainable construction materials.  International  Journal   of  
Greenhouse   Gas   Control.   2020;  93:
102882. dio: 10.1016/j.ijggc.2019.102882.



53
    © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the 
Creative Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Artificial Intelligence and Sustainable Materials Vol.1Mason Publish Group

Hepburn C, Adlen E, Beddington J, Carter E A, Fuss S, Mac Dowell N, et al. The technological and 
economic prospects for CO2 utilization and removal. Nature. 2019; 575: 87-97. dio: 10.1038/s41586-
019-1681-6.
Norhasyima R S,Mahlia T M I. Advances in CO℃ utilization technology: A patent landscape review. 
Journal of CO2 Utilization. 2018; 26: 323-335. dio: 10.1016/j.jcou.2018.05.022.
Raza A, Gholami R, Rezaee R, Rasouli V,Rabiei M. Significant aspects of carbon capture and  storage – 
A review. Petroleum. 2019;  5:  335-340. dio: 10.1016/j.petlm.2018.12.007.
Lee H-S, Lim S-M,Wang X-Y. Optimal Mixture Design of Low-CO2 High- Volume   Slag  Concrete   
Considering  Climate  Change  and  CO2  Uptake. International Journal of Concrete Structures and 
Materials. 2019;  13.  dio: 10.1186/s40069-019-0359-7.
Rostami V, Shao Y,Boyd A J J J o M i C E. Carbonation curing versus steam curing for precast concrete 
production. 2012; 24: 1221-1229.
Ashraf   W.    Carbonation    of   cement-based    materials:    Challenges    and opportunities. 
Construction and Building Materials. 2016; 120: 558-570. dio: 10.1016/j.conbuildmat.2016.05.080.
Chen  T,Gao  X.  Effect   of  carbonation   curing  regime   on   strength   and microstructure of Portland 
cement paste. Journal of CO2  Utilization. 2019;34: 74-86. dio: 10.1016/j.jcou.2019.05.034.
Qian X, Wang J, Fang Y,Wang L. Carbon dioxide as an admixture for better performance of OPC-based 
concrete. Journal of CO2  Utilization. 2018; 25: 31-38. dio: 10.1016/j.jcou.2018.03.007.
Saillio M, Baroghel-Bouny V, Pradelle S, Bertin M, Vincent J,d'Espinose de Lacaillerie J-B. Effect of 
supplementary cementitious materials on carbonation of cement pastes. Cement and Concrete Research. 
2021;  142:  106358.  dio: 10.1016/j.cemconres.2021.106358.
Justnes H, Skocek J, Østnor T A, Engelsen C J,Skjølsvold O. Microstructural changes of hydrated 
cement blended with fly ash upon carbonation.  Cement and         Concrete         Research.          2020;         
137:          106192.          dio: 10.1016/j.cemconres.2020.106192.
Qin L, Gao X,Li Q. Upcycling carbon dioxide to improve mechanical strength of Portland cement. 
Journal of Cleaner Production. 2018; 196: 726-738. dio: 10.1016/j.jclepro.2018.06.120.
Han Y,  Lin  R,Wang X-Y. Performance  of sustainable  concrete  made  from waste  oyster  shell  
powder  and  blast  furnace  slag.  Journal   of Building Engineering. 2022; 47: 103918. dio: 10.1016/
j.jobe.2021.103918.
ASTM C349, Standard Test Method for Compressive Strength of Hydraulic- Cement  Mortars  (Using  
Portions  of  Prisms  Broken  in  Flexure),  ASTM International, West Conshohocken, PA, 2018.
ASTM  C78,  Standard  test  method  for  flexural  strength  of concrete  (using simple    beamwith     
third-point     loading),     ASTM    International,     West Conshohocken, PA, 2018.
ASTM C597-16, Standard Test Method for Pulse Velocity through Concrete, ASTM International, West 
Conshohocken, PA, 2016.
AASHTO T 358, Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to 
Resist Chloride Ion Penetration, American Association of State Highway and Transportation Officials, 
Washington, DC, 2015.
Lin  R-S,   Han  Y,Wang  X-Y.  Macro–meso–micro   experimental   studies  of calcined clay limestone 
cement (LC3) paste subjected to elevated temperature.
Cement     and      Concrete      Composites.      2021;      116:      103871.      dio: 10.1016/
j.cemconcomp.2020.103871.
Han  Y,  Lin  R,Wang  X-Y.  Performance  and  sustainability  of  quaternary composite   paste    
comprising   limestone,    calcined   Hwangtoh    clay,    and granulated blast  furnace  slag.  Journal  of 
Building  Engineering.  2021;  43:
102655. dio: 10.1016/j.jobe.2021.102655.
Berodier E,Scrivener K J J o t A C S. Understanding the Filler Effect on the Nucleation and Growth 
ofC℃S℃H. 2014; 97: 3764-3773.
Lothenbach B, Le Saout G, Gallucci E,Scrivener K. Influence of limestone on the hydration of Portland 



54
     © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the 
Creative Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Artificial Intelligence and Sustainable Materials Vol.1 Mason Publish Group

cements. Cement and Concrete Research. 2008; 38: 848-860. dio: 10.1016/j.cemconres.2008.01.002.
Ge Z, Tawfek A M, Zhang H, Yang Y, Yuan H, Sun R, et al. Influence of an extrusion  approach  on  the  
fiber  orientation  and  mechanical  properties  of engineering  cementitious  composite.  Construction  
and  Building  Materials. 2021; 306: 124876. dio: 10.1016/j.conbuildmat.2021.124876.
Bonavetti V, Donza H, Menendez G, Cabrera O, Irassar E J C,Research C. Limestone filler cement in 
low w/c concrete: A rational use of energy. 2003;33: 865-871.
Vuk  T,  Tinta  V,  Gabrovšek  R,  Kaučič  V  J  C,Research  c.  The  effects  of limestone addition, 
clinker type and fineness on properties of Portland cement. 2001; 31: 135-139.
Kang S-H, Jeong Y, Tan K H,Moon J. The use of limestone to replace physical filler of quartz 
powder in UHPFRC. Cement and Concrete Composites. 2018;94: 238-247. dio: 10.1016/
j.cemconcomp.2018.09.013.
Dhandapani Y, Santhanam M, Kaladharan G,Ramanathan S. Towards ternary binders  involving  
limestone  additions  —  A  review.  Cement  and  Concrete Research. 2021; 143: 106396. dio: 10.1016/
j.cemconres.2021.106396.
Zhang  H,  Xu  Y,  Gan  Y,  Chang  Z,   Schlangen  E,Šavija  B.  Combined experimental and numerical 
study of uniaxial compression failure of hardened cement  paste  at  micrometre  length  scale.  Cement  
and  Concrete  Research. 2019; 126: 105925. dio: 10.1016/j.cemconres.2019.105925.
Ghoddousi P,Adelzade Saadabadi L. Study on hydration products by electrical resistivity  for  self-
compacting  concrete  with  silica  fume  and  metakaolin. Construction    and     Building    Materials.     
2017;     154:     219-228.    dio: 10.1016/j.conbuildmat.2017.07.178.
Meddah  M   S,  Lmbachiya  M   C,Dhir  R  K.  Potential  use   of  binary  and composite  limestone  
cements  in  concrete  production.   Construction   and Building            Materials.            2014;             
58:            193-205. dio: 10.1016/j.conbuildmat.2013.12.012.
Lee H-S,Wang X-Y. Hydration Model  and  Evaluation  of the  Properties  of Calcined   Hwangtoh   
Binary   Blends.   International   Journal   of  Concrete Structures and Materials. 2021; 15. dio: 10.1186/
s40069-020-00438-5.
Bentz D P. Modeling the influence of limestone filler on cement hydration using CEMHYD3D. Cement 
and Concrete Composites. 2006; 28:  124-129. dio: 10.1016/j.cemconcomp.2005.10.006.
Ylmén  R,  Jäglid  U,  Steenari  B-M,Panas  I.  Early  hydration  and  setting  of Portland cement 
monitored by IR, SEM and Vicat techniques.  Cement and Concrete            Research.            2009;             
39:            433-439.  dio:10.1016/j.cemconres.2009.01.017.
Mollah M Y, Kesmez M,Cocke D L. An X-ray diffraction (XRD) and Fourier transform infrared 
spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/
S) of arsenic(V) in Portland cement type-V. Sci Total  Environ.2004; 325:255-262. dio: 10.1016/
j.scitotenv.2003.09.012.
Trezza M, Lavat A J C,Research C. Analysis of the system 3CaO · Al2O3– CaSO4 · 2H2O–CaCO3–
H2O by FT-IR spectroscopy. 2001; 31: 869-872.
Lin  R-S,  Lee  H-S,  Han  Y,Wang  X-Y.  Experimental  studies  on  hydration– strength–durability   
of  limestone-cement-calcined   Hwangtoh   clay   ternary composite.  Construction  and  Building 
Materials.  2021;  269:  121290.  dio: 10.1016/j.conbuildmat.2020.121290.
Li Q, Su A,Gao X. Preparation of durable magnesium oxysulfate cement with the incorporation of 
mineral admixtures and sequestration of carbon dioxide. Sci Total Environ. 2021; 809: 152127. dio: 
10.1016/j.scitotenv.2021.152127.
De Weerdt K, Haha M B, Le Saout G, Kjellsen K O, Justnes H, Lothenbach B J  C,  et  al.  Hydration  
mechanisms  of ternary  Portland  cements  containing limestone powder and fly ash. 2011; 41: 279-
291.
Korea environment industry & technology institute, LCI DB emission factor. http://www.epd.or.kr/eng/
lci/lciCo200.do, 2022 ( accessed 10 March 2022).
Zhang  Y,  Zhang  J,  Luo  W,  Wang  J,   Shi  J,  Zhuang  H,  et  al.  Effect  of compressive strength and 



55
    © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the 
Creative Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Artificial Intelligence and Sustainable Materials Vol.1Mason Publish Group

chloride diffusion on life cycle CO2 assessment of concrete containing supplementary cementitious 
materials. Journal of Cleaner Production. 2019; 218: 450-458. dio: 10.1016/j.jclepro.2019.01.335.
Campos H F, Klein N S, Marques Filho J,Bianchini M. Low-cement high-  strength  concrete  
with  partial  replacement  of  Portland  cement  with  stone  powder and silica fume designed by 
particle packing optimization. Journal of Cleaner Production. 2020; 261: 121228. dio: 10.1016/
j.jclepro.2020.121228.
Yang   K-H,   Jung    Y-B,   Cho    M-S,Tae   S-H.    Effect   of   supplementary cementitious materials 
on reduction of CO2 emissions from concrete. Journal of        Cleaner         Production.         2015;          
103:         774-783.         dio: 10.1016/j.jclepro.2014.03.018.



56

Mason Publish GroupArtificial Intelligence and Sustainble Materials Vol.1

Creative Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)
     © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the 

Environmental and Costs Analysis of Concrete 
and Ultra-high Performance (UHPC) Bridge 
Decks Subjected to Local Climate Effects

Jin Fan1, Wei Huang2 , Hao Wang3, Matthew P. Adams4, Matthew J. Bandelt5,*

1 Department of Civil and Environmental Engineering,  University of California, 
Davis, Davis, CA, 95616 USA; John A. Reif, Jr., Department of Civil and 
Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102,  
USA,  jdfan@ucdavis .edu
2 Department of Civil and Environmental Engineering, Rutgers,  The State  University 
of New Jersey, Piscataway, 08854,  USA, wh288@scarletmail .rutgers .edu
3 Department of Civil and Environmental Engineering, Rutgers,  The State  University 
of New Jersey, Piscataway, 08854,  USA, hw261@soe .rutgers .edu
4 John A. Reif, Jr., Department of Civil and Environmental Engineering, New Jersey 
Institute of Technology, Newark, NJ, 07102,  USA,  matthew.p .adams@njit .edu
5 John A. Reif, Jr., Department of Civil and Environmental Engineering, New Jersey 
Institute of Technology, Newark, NJ, 07102,  USA, bandelt@njit .edu 

      
    

      
    

   
    

    
      

   
  

 

Keywords:  Ultra-high-performance concrete; Microstructure; CO2

Abstract
Ultra-high-performance  concrete  (UHPC)  exhibits  high  compressive  strength  and good durability. How-
ever, owing to the dense microstructure of UHPC, carbonation curing cannot be performed to capture and 
sequester carbon dioxide (CO2). In this study, CO2 was added to UHPC indirectly. Gaseous CO2 was first 
converted into solid calcium carbonate (CaCO3) using calcium hydroxide, and the converted CaCO3 was 
then added to UHPC at 2, 4, and 6 wt.% based on the cementitious material. The performance and sus-
tainability of UHPC with indirect CO2 addition were investigated through macroscopic and microscopic ex-
periments. The experimental results showed that the method used did not negatively affect the performance 

of UHPC. Compared with the control group, the early strength, ultrasonic velocity, and resistivity of UHPC 
containing solid CO2 improved to varying degrees. Microscopic experiments, such as heat of hydration and 
thermogravimetric analysis (TGA), demonstrated that adding captured CO2 accelerated the hydration rate 

of the paste. Finally, the CO2 emissions were normalized according to the compressive strength and resis-
tivity at 28 days. The results  indicated  that  the  CO2 emissions  per  unit  compressive  strength  and  unit 
resistivity of UHPC with CO2 were lower than those of the control group.

  absorption.
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1.  Introduction and Background
Production of portland cement, the main contributor of CO2  emissions from concrete produc- tion, 

currently exceeds 4 billion tons annually  [1].  Consequently, concrete, the most widely used construc-
tion material, accounts for approximately 8% of global anthropogenic CO2  emissions [2, 3]. In the midst 
of the growing climate crisis, the demand for construction materials is expected to grow due to trends in 
development, urbanization, and population growth [4]. With concrete consumption expected to grow, it 
is imperative to adapt the construction sector to prevent additional emissions.

In addition to climate challenges, maintenance and rehabilitation of critical infrastructure, such as 
highway bridges, present ongoing challenges for bridge owners and transportation agencies.  These structures 
are subjected to constant traffic loads; and bridge decks, which are most commonly made of concrete,  are  
subjected to harsh environmental conditions leading to deterioration over time [5].  To address these 
challenges, there is growing interest in exploring non-conventional building materials that can promote 
an environmentally sustainable and socially resilient built environment [6, 7].

Ultra-high performance concrete (UHPC) is one such revolutionary material that has demon- strated im-
proved performance and longevity [8, 9, 5].  Compared to conventional concrete, UHPC exhibits superior re-
sistance to cracking [10, 11] and harmful material ingress  [12, 13], and is able to achieve significantly higher 
mechanical strength [14, 15] due to its dense microstructure and the incorporation of steel fibers [16, 17].  
Although UHPC’s mechanical  [18, 19, 20, 21, 22] and dura- bility performance  [23, 24, 25, 26]  have  been 
extensively studied, its environmental impacts have received limited attention.  At the material level, UHPC 
has higher environmental impacts than concrete due to the higher volume of portland cement and steel fibers 
[27].  However, due to UHPC’s high mechanical strength, UHPC structures can reduce material volume and 
thus reduce carbon emissions by up to 36.6%, as demonstrated by Joe and Moustafa [28].  Similarly, Sameer 
et al. [29] indicated that UHPC bridge design could lower the carbon footprint of the bridge by 14% com-
pared to reinforced concrete bridges.  In contradiction,  studies by Stengel and Schießl  [30] and M´arquez et 
al.  [31] showed that the adoption of UHPC material did not produce a more environmentally friendly bridge 
construction, despite a significant reduction in the volume of materials. Meanwhile, beyond the construction 
stage, UHPC structures could have lower carbon emissions compared to conventional concrete structures 
when considering the use and maintenance stage.  For example, Dong [32] found that a UHPC girder had 
lower carbon emission compared to a concrete girder due to less frequent maintenance requirements over the 
same lifespan.

Among the limited studies that considered the maintenance stages of a structure’s life cycle, even 
fewer have integrated life-cycle prediction analysis.  This analysis is critical for determining life spans 
and thus accurately quantifying life cycle carbon emissions.   The  study by Fan et al.[33] predicted 
the lifespans of a set of UHPC beams through multi-physics modeling and found that UHPC’s high 
mechanical strength and excellent durability performance resulted in 48% lower carbon emissions com-
pared to conventional concrete beams when considering maintenance stages. However, the demolition 
stage and the allocation of waste materials to landfills also need to be quantified. Furthermore, none of 
those studies, except Stengel and Schießl [30] considered categories of environmental impacts other than 
carbon emission,  such as air pollutants.   The  inconsistent quantification of carbon emissions from the 
construction stage, the lack of service life predictions, the limited investigation of cradle-to-grave life 
cycle analysis, and the insufficient quantification of environmental impacts suggest that a comprehensive 
study of whole-stage life cycle analysis, based on physics-informed models, is needed to better achieve sus-
tainable and resilient design goals when adopting UHPC materials. In addition to carbon emissions, other 
environmental impacts such as air pollutants must also be considered to avoid additional health risks to 
the local community. Finally, life cycle costs must be investigated to address the economic concerns of 
UHPC structures.  The external societal costs of climate damage, quantified by the social costs of car-
bon (SCC), remain unexplored for UHPC materials.
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This study aims to quantify and compare the long-term serviceability characteristics, environ- mental 
impacts, and costs of a reinforced normal-strength concrete bridge deck and a redesigned, smaller-sized 
reinforced UHPC bridge deck.  A time-dependent multi-physics modeling framework was employed [34] 
which integrates realistic regional environmental factors such as the periodic ap- plications of de-icing 
salts and fluctuating temperatures to simulate the performance of the bridge decks over their service 
life.  Chloride profiles and structural deterioration after corrosion are used to assess the service life per-
formance of reinforced UHPC and reinforced concrete bridge decks. The environmental impacts from 
cradle to grave, including greenhouse gas (GHG) emissions, air pollutants of nitrogen oxides (NOX ), 
sulfur oxides (SOX ), volatile organic compounds (VOCs), par- ticular matter less than 10 µm (PM10 
) and particulate matter less than 2.5 µm (PM2.5 ), and carbon monoxide (CO) were quantified. The life 
cycle costs, including SCC, of the reinforced concrete and reinforced UHPC bridge decks were compared.

2.  Background of Reinforced Concrete Bridge Deck Deterioration
In cold regions, such as the case selected in this study, de-icing materials are regularly applied to melt 

snow on roads and bridges. Corrosion of reinforcement steel can initiate and propagate due to accumu-
lation of de-icing materials, and eventually deteriorate reinforced concrete infrastructures, especially in 
bridge decks in locations with high traffic loading.  It is noted that there are many deterioration 
mechanisms that can shorten the service life of reinforced concrete structures, only corrosion  (the 
most common one) was considered.   The  fundamental  background of corrosion is briefly introduced in 
the following subsections.

2.1.  Chloride  Transport
Chloride transport in sound cementitious materials is a diffusion process governed by Fick’s second 

law [35]:

where CCl  (% mass of cementitious materials) is the chloride concentration in concrete, DCl   (m
2 
/s) 

indicates the chloride diffusion coefficient, and t (seconds) is the diffusion time.

A common method used to account for the effect of cracking on chloride transport in cementitious mate-
rials is the smeared cracking modeling technique.  In such models, discrete crack geometry is not explicitly 
modeled. Instead, higher chloride diffusion coefficients are integrated in the cracked zones. The nonlin-
ear relationships between crack width and the reference chloride diffusion coefficients of concrete and 
UHPC materials have been empirically described in the literature by the following equations, respec-
tively [36, 13]:

where w is crack width (µm). The chloride diffusion coefficient under the influence of temperature 
fluctuation is:

DC l   = Dre f   ·  f (T)                                                              (4)    

f(T) is described as follows [37]:

where  U  is the activation energy  (44.6 KJ/mol),  R is the gas constant  (8.3  J/mol), Tref   is the reference 
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temperature (293.2 K) of the measured diffusion coefficient, and T is the concrete/UHPC temperature [37]. 
The impact of cracking on oxygen penetration in concrete/UHPC is described as [38]:

where D\* jc3 \* hps13 \o\al\s\up 3crO\* jc3 \* hps13 \o\al\s\up 3a2ck and D\* jc3 \* hps13 \o\al\s\up 
3soO\* jc3 \* hps13 \o\al\s\up 3u2nd are the oxygen diffusion coefficients in cracked and sound areas, re-
spectively.

wcr  is the critical crack width for the study and is assumed as 0.1 mm [39, 40, 38].

2.2.  Corrosion Initiation
Cementitious materials, including concrete and UHPC, serve as barriers against de-icing materials that 

can cause corrosion in steel reinforcement.   Corrosion  occurs  gradually  over  time once the concen-
tration of such materials reaches a threshold level, known as the critical chloride content Clcrit  [41, 
42].

2.3.  Corrosion Propagation
Corrosion is an electrochemical process, in which the electrons are freed from the steel and then react 

with water and oxygen.   The  electrochemical potential  ϕ  (mV)  distribution and electrical charge 
flow i (A/m

2 ) are governed by Laplace’s equation and Ohm’s law, respectively [43, 44, 45]:

The numerical polarization equation for the anodic reaction is [45]:  [45]:

The polarization equation of cathodic reaction is [45]:

 and    represent the anodic and cathodic exchange current density, respectively.  and  are 
the anodic and cathodic equilibrium potentials, respectively.  βFe   is the anodic Tafel constant, and βO2    

denotes the cathodic Tafel constant.  iL  refers to the limiting current density [46, 47].

3.  Service Life Modeling

3.1.  Service Life Modeling Procedure
A time-dependent multi-physics modeling approach, building on the authors’ previous work [34], was 

used in this study to predict the service life performance of the reinforced concrete and rein- forced 
UHPC bridge decks. The de-icing material penetration, corrosion propagation, and structural response 
were connected through multiple modeling platforms and time steps. First, the initial struc- tural response 
under traffic loading was simulated using DIANA Version 10.5 [48].  The transport properties of con-
crete and UHPC were then updated and incorporated into the chloride penetration analysis using the 
software package COMSOL Multiphysics Version 5.4  [49].  Next, the corrosion propagation simulation 
calculated rust expansion thickness,  which was applied as an additional displacement load alongside 
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traffic loading in the structural analysis.   This iterative process was repeated for subsequent time steps. 
The reader is referred to Fan et al. [34] for further background on the modeling approach.

At each time step, the corroded area of the steel reinforcement and the cracking status of the con-
crete and UHPC were updated.  The time intervals for the reinforced concrete and reinforced UHPC 
bridge deck were set to four months and five years, respectively.  The larger time step for the reinforced 
UHPC specimen was adopted to maintain the balance between computing efficiency and modeling accura-
cy.

3.2.  Bridge  Deck Descriptions  and Boundary  Conditions
Figure 1(a) shows a representative cross-section design of a reinforced concrete bridge deck.  The thick-

ness of the reinforced concrete bridge deck was 250 mm.  The top and bottom concrete cover was 63 
mm and 25 mm, respectively. The reinforcement bar diameter was 19mm. The span length was 3300 mm 
and only half of the span was simulated due to the symmetrical geometry.

Sustained traffic load was simplified as displacements applied at midspan.  The reinforced UHPC bridge 
deck was redesigned with a reduced depth of 125 mm, which resulted in a load capacity (145.1 kN) 
equivalent to that of the reinforced concrete bridge deck (142 .3 kN).  Additionally, the cover depth of 
the reinforced UHPC bridge deck was reduced to 25 mm.  According to ACI 224 R, the allowable crack 
width for the tensile face of a reinforced concrete structure exposed to de-icing chemicals is 0.18 mm [50].  
Thus, load within the service load range that resulted in a crack width of 0.18 mm was chosen as the initial 
condition for the reinforced concrete bridge deck, which was 41 kN. For the reinforced UHPC bridge deck, 
the initial crack width at the same loading level (41 kN) was 0.017 mm, which was one order of mag-
nitude smaller than that of the reinforced concrete bridge deck.

Figure 1: Concrete bridge deck and the finite element modeling (FEM) set up.

Figure 2: (a), Surface chloride conditions and temperature fluctuation; reference stress strain contour of (b) 
UHPC, and (c) concrete.

For bridges located in cold regions, de-icing materials used during the snowing seasons are the major  
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source of chloride  ions.   In  this  study,  a  steady  and  high  concentration  of  chloride  ions (0.6% of 
concrete/UHPC mass) was assumed to be applied at the top surface of the bridge deck for four months 
during the snow season.  A lower residual surface chloride concentration of 0.2% of concrete/UHPC 
mass was assumed for the remainder of the year after the snow season  [51]. Oxygen was assumed to 
be available at both the top and bottom sides.  The seasonal variations in surface chloride content and lo-
cal temperature fluctuations within the studied region are graphically presented in Figure 2(a) [51, 52].

3.3.  Structural Response Modeling
Figure 1(b) shows the structural response modeling set up in DIANA Version 10.5 [48].  As shown in Fig-

ure 1(b),  the left corner and left side deformation were restrained.   A prescribed incremental displace-
ment of 0.25 mm was applied at midspan to simulate the traffic loading.  A total strainbased fixed-
crack model with a shear retention factor of 0.01 was adopted to simulate the concrete and UHPC materials  
[53].  The mesh size of both concrete and UHPC was 7 mm × 7 mm.  The reinforcement bar was simulated 
as truss elements with the same mesh size.  A line search algorithm and a secant Newton-Raphson scheme were 
selected for numerical convergence.  The convergence criteria for energy, displacement, and force norms were 
0.01%, 0.1% and 1%, respectively [11].

The mixture design of the concrete and UHPC bridge are shown in Table 1, the steel fiber volume of UHPC 
was 2%. The mechanical properties of normal strength concrete and UHPC were obtained from Shao and 
Billington  [20] and are summarized in Table 2.   Normal strength concrete had a tensile strength of 3.1 
MPa with a tensile fracture energy of 0.144 MPa-mm, and a compressive strength of 41.9 MPa with a 
compressive fracture energy of 35.7 MPa-mm [20].  UHPC, on the other hand, had a tensile strength of 10.5 
MPa and a tensile fracture energy of 11.2 MPa-mm, as well as a compressive strength of 185.8 MPa with a 
compressive fracture energy of 180.0 MPa-mm [20]. The reinforcing bar used in the study had a yielding 
strength of 455 MPa and an ultimate strength of 675 MPa [54].

Table 1: Mixture design and transport distances of raw materials to mixture plant (A2)

Materials Unit Concrete UHPC Unit Rail Truck Ship

Glass Power kg/m2 0 26 ton-km 6 139 7

Silica Fume kg/m2 0 29 ton-km 6 139 7

Portland Cement kg/m2 106 89 ton-km 6 139 7

Fine Aggregate kg/m2 214 0 ton-km 21 54 14

Coarse Aggregate kg/m2 190 0 ton-km 26 39 11

Water kg/m2 57 14 ton-km 0 0 0

Silica Sand kg/m2 0 128 ton-km 26 39 11

Steel Bar kg/m2 42 27 ton-km 0 300 0

Steel Fiber kg/m2 0 20 ton-km 0 300 0

Steel Girder kg/m2 133 117 ton-km 0 300 0

Superplasticizer kg/m2 0 8 ton-km 0 300 0

3.4.  Diffusion and  Corrosion Modeling
Diffusion and corrosion modeling was completed in COMSOL Multiphysics Version 5.4 [49].  The impact 

of temperature on chloride transport was considered using the Equation (4).  The oxygen ingress was consid-
ered to take place through both the top and bottom surfaces of the bridge deck in the computational model.  
On the other hand, chloride ion penetration was assumed to occur exclusively from the top surface, where 
de-icing material was applied.
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Table 2: Mechanical properties of concrete, UHPC and steel

Mechanical properties Notation Unit Concrete UHPC Steel

Tensile strength f t MPa 3.1 10.5 -

Strain at crack initiation εt0 % 0.01 0.019 -

Strain at onset of softening εtp % 0.01 0.2 -

Compressive strength f c MPa 41.9 185.8 -

Modulus of elasticity E GPa 31.2 53.5 200

Tensile fracture energy Gf MPa-mm 0.144 11.2 -

Compressive fracture energy Gc MPa-mm 35.7 180.0 -

Yield strength fy MPa - 455

Ultimate strength fu MPa - 675

Poisson’s ratio ν mm/mm 0.2 0.18 0.30

The reference chloride transport coefficients for concrete and UHPC were reported as Dref  c  = 1.3 × 
10

-11   m
2 /s and Dref  UHPC   =  4.5 × 10

-13   m2 /s,  respectively  [55].   The  oxygen transport coefficients 
for concrete and UHPC were reported as DO2    c  =  3.02  × 10

-9  m2  /s and DO2    UHPC  = 4.2×10
-10  m2 /

s, respectively [55]. The electrical resistivity of concrete, ρc , was 159 Ω · m, while the electrical resistivity 
of UHPC (ρUHPC ) at the same level of saturation was 23067 Ω·m due to the dense material property [55,56]. 
The anodic Tafel slopes, βFe  c  = 65 mV/dec and βFe  UHPC  = 61 mV/dec, as well as cathodic Tafel slopes 
βO2   c = —138.6 mV/dec and βO2   UHPC= —130.9 mV/dec) were adopted from the literature [55].  The 
anodic equilibrium potential was set as ϕ\* jc3 \* hps13 \o\al\s\up 30Fe  = —600 mV, while the cathodic 
equilibrium potential was set as ϕ\* jc3 \* hps13 \o\al\s\up 30O2    = 200 mV.  The anodic and cathod-
ic exchange current densities were i\* jc3 \* hps13 \o\al\s\up 30Fe = 2.75 × 10-4A/m2  and ϕ\* jc3 \* 
hps13 \o\al\s\up 30O2 = 6 × 10

-6
A/m2 , respectively  [55].  In this study, a constant Clcrit  equal to 0.06% 

of concrete/UHPC mass is assumed [57, 58].  Surface oxygen concentration O2surf  = 0.268 mol/m
3   [39], 

chloride diffusion activation energy U = 44.6 KJ/mol, gas constant R = 8.3 J/mol, and reference tem-
perature Tref  = 293.2 K.  Detailed descriptions of the input parameters can be found in the authors’ previ-
ous work [34].

After obtaining corrosion current density from corrosion modeling, the cross section loss and rust expan-
sion was calculated [45, 59, 34] :

where t is the corrosion time (seconds), Ms  = 55.85 g/mol is the atomic mass of iron, ZFe  = 2 is the 
valency of the anodic reaction, and ρs  = 7800 kg/m3  is the steel density.

The formation of corrosion products (rust) can occupy a greater volume than the original steel.

As a result, after part of the corrosion products fill the steel concrete interface, further accumulation of 
these products at the steel concrete interface can generate internal pressure on the steel and concrete.   
The  thickness  of the  rust layer expansion can then be calculated using the following equation:

u(t) = (n — 1)σ(t)                                                            (12)

where n is the volume expansion ratio of rust to steel and is assumed to be 3 in this study [60, 39, 42, 
34]. Rust deformation was neglected in this analysis [61].

4.  Environmental Impacts Analysis and Life-cycle Costs

4.1.  Environmental Impact Analysis  Scope
An attributional life cycle assessment (ALCA)—focusing on the directly attributable environ- 
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mental impacts over the product’s full life cycle, was applied to the cradle-to-grave approach., in 
which emissions were assessed from raw material acquisition  (sourcing, processing), construction 
(batching,  pumping, curing),  maintenance,  and end-of-life through the grave (demolition,  disposal of 
waste material). Transport-associated impacts were also considered.

A declared unit of 1  m2   of reinforced concrete/UHPC were considered to determine life cycle in-
ventories (LCI). In this study, carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) and their 
impacts were consolidated into CO2 -equivalent (CO2-eq ) emissions to analyze GHG emissions, based on 
the 100-year global warming potentials [62].  The air pollutant emissions of nitrogen oxides (NOX ),  sulfur 
oxides (SOX ),  volatile organic compounds (VOCs ),  carbon monoxide (CO), particular matter less than 10 
µm (PM10 ), and particulate matter less than 2.5 µm (PM2.5 ) were also quantified.

4.2.  Environmental Impact Inputs  and Assumptions
Emission factors of the life cycle stages are shown in Table 3.  The emission factors of the raw mate-

rials (A1) were adopted from an open source tool, OpenConcrete, by Kim et al. [63]. Emission factors 
of steel girder and superplasticizer were adopted from Ecoinvent 3 database version 3  (a commonly 
used LCI database).  Producing steel fiber and steel bar requires additional processing compared to that 
of a steel girder, therefore higher emission factors were assumed for steel fiber and steel bar. A2 is the 
raw material transport stage, the associated emission factors were based on US national average transport 
distances of rail, truck, and ship,  according to Nahlik et al. [64].  The transport distances and modes 
of regular concrete constituents, steel, and admixture are shown in Table 1.  The transport distances of 
glass powder, silica fume, PC, and aggregates were adopted from Marceau et al. [65]. Steel materi-
als and superplasticizer were assumed to be transported with a distance of 300 km.  For batching one 
cubic meter of UHPC, 0.35 liter of oil and 7.1 kWh of electricity were used while bathing the same 
amount of concrete consumed 0.35 liter of oil and 4.4 kWh of electricity [29].  The emission factors of 
electricity is based on New Jersey electricity grid of US. Mixed concrete and UHPC were assumed to 
be transported (A4) 300 km to the construction site by truck within New Jersey.  According to  Sameer 
et al.  [29], pumping of one cubic meter of concrete or UHPC consumed 2.7 kWh.  Demolition of one 
cubic meter of concrete consumed 0.76 liter of oil and 18.3 kWh of electricity while demolition of the 
same amount of UHPC consumed 2 liters of oil and 36.5 kWh of electricity.  Transport distance of the 
demolished waste to the landfill site  (C2) was assumed to be 100 km.  For the declared unit of 1 m

2  

bridge deck, the volume of concrete and UHPC were 0.25 m
3  and 0.125 m

3 
, respectively.
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Table 3: Life cycle stages and em
issions data

L
ife cycle stages

M
aterials/P

rocesses
U

n
it

k
g G

H
G

kg C
O

2
kg C

H
4

kg N
2 O

kg N
O

X
kg SO

X
kg PM

10
kg PM

2.5
kg V

O
C

kg C
O

A
1

G
lass Pow

der
per kg

5.53E-02
5.51E-02

2.52E-06
4.55E-07

4.18E-05
5.79E-05

2.11E-05
1.31E-05

1.90E-06
5.15E-05

A
1

Silica Fum
e

per kg
0.00E+00

0.00E+00
0.00E+00

0.00E+00
0.00E+00

0.00E+00
9.30E-06

9.30E-06
0.00E+00

0.00E+00

A
1

PC
per kg

9.50E-01
9.47E-01

4.02E-05
6.44E-06

3.37E-04
2.65E-03

4.46E-04
3.69E-04

1.03E-05
6.16E-04

A
1

Fine A
ggregate

per kg
2.07E-03

2.06E-03
9.00E-08

1.70E-08
1.56E-06

2.17E-06
1.17E-04

1.17E-04
7.10E-08

1.93E-06

A
1

Coarse A
ggregate

per kg
3.16E-03

3.15E-03
1.40E-07

2.60E-08
2.39E-06

3.31E-06
1.19E-04

1.18E-04
1.08E-07

2.95E-06

A
1

W
ater

per kg
0.00E+00

0.00E+00
0.00E+00

0.00E+00
0.00E+00

0.00E+00
0.00E+00

0.00E+00
0.00E+00

0.00E+00

A
1

Silica Sand
per kg

5.53E-02
5.51E-02

2.52E-06
4.55E-07

4.18E-05
5.79E-05

2.11E-05
1.31E-05

1.90E-06
5.15E-05

A
1

Steel B
ar

per kg
1.81E+00

1.81E+00
1.05E-02

3.23E-05
4.73E-03

4.49E-03
2.73E-03

2.66E-03
1.46E-02

2.39E-02

A
1

Steel Fiber
per kg

1.81E+00
1.81E+00

1.05E-02
3.23E-05

4.73E-03
4.49E-03

2.73E-03
2.66E-03

1.46E-02
2.39E-02

A
1

Steel G
irder

per kg
9.06E-01

9.06E-01
5.25E-03

1.62E-05
2.37E-03

2.24E-03
1.37E-03

1.33E-03
7.32E-03

1.20E-02

A
1

Superplasticizer
per kg

4.64E-01
4.64E-01

3.27E-05
1.69E-05

1.48E-03
2.75E-03

1.69E-04
8.35E-05

4.15E-05
8.81E-04

A
2

Transport, rail
per ton-km

1.40E-02
1.40E-02

0.00E+00
0.00E+00

1.10E-04
3.96E-05

8.50E-07
2.89E-06

9.33E-06
3.88E-05

A
2

Transport, truck
per ton-km

8.65E-02
8.65E-02

0.00E+00
0.00E+00

5.05E-04
5.20E-07

1.91E-05
1.50E-05

2.83E-05
9.23E-05

A
2

Transport, ship
per ton-km

1.80E-03
1.80E-03

0.00E+00
0.00E+00

5.80E-05
1.27E-05

9.33E-06
2.53E-06

1.93E-06
3.75E-06

A
3

B
atching C

oncrete
per m

3
2.41E+00

2.40E+00
9.98E-05

1.81E-05
1.59E-03

1.62E-03
2.81E-04

6.97E-05
5.10E-05

1.36E-03

A
3

B
atching U

H
PC

per m
3

3.27E+00
3.25E+00

1.39E-04
2.51E-05

2.24E-03
2.52E-03

4.43E-04
1.08E-04

8.03E-05
2.16E-03

A
4

Transport, truck
per ton-km

8.65E-02
8.65E-02

0.00E+00
0.00E+00

5.05E-04
5.20E-07

1.91E-05
1.50E-05

2.83E-05
9.23E-05

A
5

Pum
ping (electricity)

per M
J

8.92E-02
8.89E-02

4.06E-06
7.33E-07

6.75E-05
9.35E-05

1.69E-05
4.02E-06

3.06E-06
8.31E-05

A
5

C
uring (oil)

per M
J

7.22E-02
7.20E-02

2.56E-06
4.69E-07

3.77E-05
9.82E-06

7.81E-07
4.12E-07

1.61E-07
2.87E-06

C1
D

em
olition (oil)

per M
J

7.22E-02
7.20E-02

2.56E-06
4.69E-07

3.77E-05
9.82E-06

7.81E-07
4.12E-07

1.61E-07
2.87E-06

C2
Transport (truck)

per ton-km
8.65E-02

8.65E-02
0.00E+00

0.00E+00
5.05E-04

5.20E-07
1.91E-05

1.50E-05
2.83E-05

9.23E-05

C3
C

rushing C
oncrete

per m
3

3.78E+00
3.76E+00

1.50E-04
2.73E-05

2.35E-03
2.00E-03

3.32E-04
8.56E-05

6.07E-05
1.60E-03

C3
C

rushing U
H

PC
per m

3
7.55E+00

7.53E+00
3.00E-04

5.47E-05
4.71E-03

4.00E-03
6.65E-04

1.71E-04
1.21E-04

3.21E-03
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4.3.  Social Impacts Analysis

In this study, SCC is evaluated as a theoretical measure that accounts for the multifaceted im- pacts of 
climate change.  These include changes in agricultural productivity, health-related effects, property damage 
caused by flooding and extreme weather events, disruptions to energy infrastruc- ture, heightened risks of 
conflict, climate-induced migration, and the economic value of ecosystem services  [66].   The  SCC  and  GHG 
emissions of concrete  and UHPC bridge decks are applied to explore how incorporating externalized costs 
into market pricing might influence the relative differ- ences between these mixtures.  The externalized climate 
costs vary depending on the specific type of greenhouse gas (e.g., CO2 , CH4 , N2 O) and the timing of emission 
changes.  In this analysis, the social costs of CO2 , CH4 , and N2 O are assumed to be $116, $3, 800, and $45, 000, 
respectively, using a 2.5% discount rate [66].

4.4.  Life-cycle  Costs  Analysis  Methodology
Life cycle cost assessment (LCCA) is an effective method to evaluate the accumulated cost of man-

aging a facility or processing a project with flexibility and comprehensiveness. The LCCA can be used 
to assess all significant and relevant costs over the service life cycle of a bridge deck, helping to optimize 
bridge deck designs that will implement the project objective at the lowest budget while with satisfied 
service level and performance.

The total cost of a bridge deck during its service life is mainly constituted of those from stages and activ-
ities such as initial construction, routing inspection, maintenance, demolition and recycling, which can be ex-
pressed as [67]:

where LCCNPV  is the total cost represented by Net Present Value (NPV); r is the monetary discount rate; Cic , Cri , 
Cmt , Cd  and Rv  are costs of different activities: initial construction, routine inspection, maintenance, demolition 
and residual value, respectively; nri  and nmt  are number of corresponding activities during the investigated 
period; T is the investigated service life.

4.5.  Life-cycle  Costs  Inputs  and Assumptions
The life cycle costs of the concrete and UHPC bridge decks were analyzed based on the results of the 

time-dependent multi-physics modeling.  The investigated life period is 100 years consider- ing the ac-
cumulated costs from initial construction, routing inspection, minor maintenance, major maintenance, 
and deck overlay. The costs from end of life such as demolition and recycling are not considered for a 
comparative analysis of the two types of bridge decks.  The assessed dimension of the bridge deck fol-
lows the dimensional set up of FEM model, in which the thickness of concrete and UHPC decks are 
250 mm and 125 mm, respectively, with both 1 lane width (3.7 m travel lane) and 1 mile length (1.6 
km). It is assumed that the same traffic conditions are applied on these two bridges and the costs from 
traffic delay due to road closure for maintenance are not considered.

The initial construction and replacement costs of the concrete bridge deck are set as $1 , 000/m2 [68].  The 
unit costs of major and minor maintenance are set as $500 and $20 per square meter, respectively [68].  The 
routine inspection consists of observations and measurements needed to de- termine the physical and function-
al condition of the bridge.  Minor maintenance is considered as preventive action before major maintenance  
(repair)[32, 33].The unit cost of inspection is set as $2/m2  [68].

As for the bridge deck made with UHPC, related literature indicated that the material cost of UHPC is 
about 4 times of conventional concrete [32,69,33], and the thickness of UHPC deck can be much thinner owing 
to the advantages of high strength and reliable durability of UHPC [70], which is in accordance with the 
dimension set up in this study.   Therefore, the normalized unit initial cost of UHPC bridge deck can be set 
as $2, 000/m

2 , which is 2 times than that of RC bridge deck considering the thinner thickness of UHPC. The 
costs of minor maintenance and routine inspection for UHPC bridge deck are assumed to be the same as those 
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of RC bridge deck.

5.  Results
This section presents the results of chloride content distribution and bridge deck deterioration, with a fo-

cus on comparing the findings between the reinforced concrete bridge deck and the reinforced UHPC bridge 
deck.   The investigation includes the service life span,  considering factors such as reinforcing bar cross-sec-
tion loss, damage ratings of the cementitious materials, and the progression of cracking over time due to chlo-
ride exposure.  Additionally, environmental impacts and life cycle costs, including social costs, were calculat-
ed based on the anticipated service life span. Figure 2(b) and (c) illustrates the reference contours of principal 
tensile strains for UHPC and concrete, serving as a measure of the level of cracking in the respective materi-
als.

5.1.  Chloride Profiles
Figure 3 (a)-(d) shows the comparative results of chloride distribution and cracking level following 30 

years of chloride exposure under sustained traffic loading for both the reinforced concrete and reinforced 
UHPC bridge decks.  As depicted in Figure 3, it is evident that the reinforced concrete bridge deck experi-
enced significantly faster chloride ingress compared to the reinforced UHPC bridge deck under the same ini-
tial load condition. Additionally, the corrosion level in the reinforced concrete bridge deck reached 100% for 
the top reinforcing bar, whereas the reinforced UHPC bridge deck exhibited only 13.3% of the top reinforcing 
bar corrosion, despite having a concrete cover that was 2.52 times thicker than that of UHPC. The simulation 
results also indicate that corrosion initiation in the reinforcing bars of the reinforced concrete bridge deck oc-
curred after one year, whereas in the reinforced UHPC bridge deck, it was 25 years.  This notable difference 
can be attributed to the combined effect of slow chloride transportation and enhanced cracking resistance 
provided by UHPC beams.  The simulation results, particularly in terms of chloride profiles, further verify the 
exceptional corrosion resistance of UHPC material.

Figure 3: Damage patterns, chloride contours, and chloride profile.

Figure 3(e) provides additional insights into the chloride profiles at different depths of the bridge decks, 
specifically at the left side and midspan.  It is observed that cracks predominantly occurred at the left side of 
the top surface when the traffic load was applied at midspan.  Consequently, larger crack widths and a high-
er number of cracks were present on the left side of the top surface, where chloride was applied, leading to 
accelerated chloride transport on the left side of the reinforced concrete bridge deck.   As  a  result,  chloride  
concentrations  were  significantly  higher  on  the  left side of the concrete bridge deck.  However, minimal 
variations in chloride profiles were observed across different horizontal locations of the reinforced UHPC 
bridge deck.  This can be attributed to the multiple fine cracks along the horizontal direction, as shown in Fig-
ure 3(d).  These findings emphasize the importance of crack distribution and width in determining the extent 
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of chloride transport, highlighting the superior crack resistance and corrosion protection capabilities of UHPC 
compared to traditional reinforced concrete structures.

5.2.  Bridge  Decks  Deterioration

5.2.1.  Steel cross-section loss

The corrosion-induced deterioration of the steel reinforcement bars in infrastructure is a critical concern, 
and assessing the extent of cross-section loss provides valuable insights into the long-term durability of 
bridge decks.  After 30 years of exposure to chloride, the steel reinforcement bars in the reinforced concrete 
bridge deck exhibited a significant cross-section loss of 12%.  This substantial degradation highlights the vul-
nerability of traditional reinforced concrete structures to corrosion- related damage over extended periods. In 
contrast, the reinforced UHPC bridge deck demonstrated exceptional resistance to corrosion-induced deterio-
ration.  Even after an extended exposure period of 140 years, the steel reinforcement bars in the UHPC deck 
experienced a comparatively mini- mal cross-section loss of only 5.3%.  The differences in cross-sectional 
loss between the reinforced UHPC bridge deck and the reinforced concrete bridge deck can be attributed to 
the notable differ- ence in corrosion propagation rates. This outstanding performance underscores the effec-
tiveness of UHPC in mitigating chloride penetration and protecting the embedded steel from corrosion-in-
duced degradation over the prolonged service life.

5.2.2.  Concrete  and  UHPC damage  ratings

The material deterioration of concrete and UHPC can be measured using a rating measurement based on 
the extent of the damaged area [71]:

R = A × 100 + B × 70 + C × 40 + D × 0                                       (14)

A, B , C, and D represent the percentage area of the materials classified as being in sound, fair, poor, and 
severe damage conditions, respectively.  An A rating of 0 indicates worst condition, while a rating of 100 
indicates best condition.  The damage level of the concrete and UHPC materials can be determined by refer-
ring to the reference principal strain contours of the finite elements, as illustrated in Figure 2(b) and (c).  For 
instance, when the principal tensile strain fell within the range of 1 to 2, the concrete and UHPC were con-
sidered to be in a sound condition as the materials were still within the elastic range.  In the range of 2 to 3, 
micro-cracking in UHPC began to develop, which was classified as a fair condition. The poor condition and 
severe damage in UHPC were assumed when the principal tensile strain ranged from 3 to 4 and from 4 to 5, 
respectively.  Conversely, normal strength concrete was assumed to exhibit fair damage in the range of 2 to 3, 
while the ranges of 3 to 4 and 4 to 5 were associated with poor and severe damage, respectively.

The reinforced concrete bridge deck exhibited a deterioration rating of 79.1% after 30 years of chloride ex-
posure, whereas the reinforced UHPC bridge deck demonstrated a significantly higher rating of 92.8% after 
140 years of chloride exposure.  The higher damage resistance of UHPC can be attributed to the synergistic 
effect of the dense material properties and the inherent cracking resistance of UHPC.

5.2.3.  Cracking development

To assess the extent of cracking in the bridge decks, the crack density was determined by calcu- lating the 
ratio of the total cracked area to the measured area.  Over time, the cracks in both bridge decks exhibited an 
increase in length and width, influenced by factors such as traffic load and the expansion of corrosion prod-
ucts following chloride exposure.  Figure 4 illustrates the crack density and number of cracks in the bridge 
decks.  The cracking density was calculated as the total length of cracks over the measured area [72]. To mea-
sure the crack density, a smaller crack width of 0 .01 mm was chosen for the reinforced UHPC bridge deck, 
while a width of 0 .05 mm was selected for the rein- forced concrete bridge deck, considering the microc-
racking characteristics of UHPC. The selection of different crack widths in the modeling process was based 
on the ability of the computational model to capture the distinct crack behavior of UHPC and normal strength 
concrete materials.  UHPC is known for its unique microstructure and enhanced ductility, which can result 
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in smaller crack widths compared to normal strength concrete. In the modeling of UHPC, a smaller crack 
width of 0.01 mm was chosen to accurately represent the microcracking characteristics and improved crack 
resistance of this material.  On the other hand, normal strength concrete typically exhibits larger crack widths 
under similar loading conditions.  In the modeling of normal strength concrete, a crack width of 0.05 mm was 
selected to represent the typical behavior of this material.

As shown in Figure 4, both the reinforced concrete and the reinforced UHPC bridge decks ex- hibited 13 
cracks after 30 years of chloride exposure.  However, the cracking density of the reinforced UHPC bridge 
deck was 43.3% lower than the reinforced concrete bridge deck after 30 years of chlo- ride exposure.  This 
was attributed to the smaller crack depth in UHPC materials.  The reinforced UHPC bridge deck reached the 
same level of cracking density after 140 years of chloride exposure.

These findings establish the significant advantage of using UHPC in bridge deck construction, particularly 
in chloride-rich environments.  The exceptional durability exhibited by the reinforced UHPC bridge deck 
highlights its potential for long-lasting, sustainable infrastructure solutions.  The superior corrosion resistance 
of UHPC offers the potential for reduced maintenance requirements and life-cycle costs, ensuring the longev-
ity and structural integrity of bridge decks in challenging environmental conditions.

Figure 4: Number of cracks and cracking density over chloride exposure time.

5.3.  Initial  GHG Emissions  and Air Pollutants
Figure 5 illustrates the average GHG emissions and air pollutants associated with the concrete and 

UHPC bridge decks per m
2 
,  covering the A1 to A5 life cycle stages.   These  stages  include emissions 

from raw material acquisition, transportation, batching, pumping, and curing. The GHG emissions per 
m

2  of concrete and UHPC bridge deck were 345 kg and 326 kg CO
2-eq , respectively. Despite UHPC gen-

erally having higher GHG emissions during construction, due to its greater cement content and the addition 
of steel fibers [73], the GHG emissions for the UHPC bridge deck, based on the declared functional unit 
(1 m

2  bridge deck), were 6% lower than those of the concrete bridge deck.  This reduction is attributed 
to the reduced volume of material required per m

2 :  only 0.125 m3  of UHPC is needed compared to 0.25 
m3  of concrete.

As shown in Figure 5, a similar trend is observed for air pollutants.   NOX   and SOX , which 
contribute to acid rain and smog formation,  from UHPC bridge deck were 8%  and 4% lower than 
that of the concrete bridge deck, respectively. The combined results of PM2.5  and PM10 , which are 
associated with respiratory and cardiovascular health risks,  was 16% lower for the UHPC bridge 
deck.  VOC and CO emissions, both contributors to air quality degradation, were both 3% lower for 
the UHPC bridge deck compared to the concrete bridge deck.  These reductions demonstrate the en-
vironmental efficiency of UHPC, where its superior mechanical properties enable lower ma- terial use, 
offsetting the higher emissions of its components and resulting in a net improvement in sustainability.
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5.4.  Life  Cycle  GHG Emissions
Based on previous deterioration simulation results 5.2, the deck overlay and deck replacement are applied 

after 15 years and 60 years of service, respectively, for the RC bridge deck, and that minor maintenance 
is applied every 4 years after initial construction. It is assumed that the UHPC bridge deck is free of 
major maintenance and deck replacement necessary within the 100-year service life due to its superior per-
formance in deterioration simulation, and its minor maintenance is applied every 4 years after 24 years 
of service when setting the crack density of 1 × 10-3 mm-1  as the threshold. Routine inspections are 
completed every 2 years for all types of bridge decks.

The UHPC bridge deck demonstrates significantly greater durability, requiring less maintenance and no 
replacement over  an investigated period of  100 years.   In  contrast,  the  concrete  bridge deck demands 
frequent maintenance, which adds to its environmental burden over its life cycle. Consequently, the 
life cycle GHG emissions of the UHPC bridge deck are substantially lower than those of the concrete 
bridge deck.  As shown in Figure 6, the total GHG emissions from raw material acquisition (A1) to dis-
posal and crushing (C3) are 2595 kg CO

2-eq  per m
2  for the concrete bridge deck and 952 kg CO

2-eq  
per m

2  
for the UHPC bridge deck, respectively.  The GHG emissions from the maintenance stage (B1-B3) 

accounted for 86% and 65% of the total emissions for the concrete and UHPC bridges, respectively.  A 
similar trend was observed for air pollutants.  NOX   emissions during the maintenance stage constituted 
86% and 65% of the total emissions for the concrete and UHPC bridges, respectively.  SOX   emissions 
from maintenance were 87% and 65% of the total for the concrete and UHPC bridges, respectively.  
Particulate matter, including PM2.5  and PM10 , as well as (VOCs ), also accounted for 87% and 65% of 
the total emissions for the concrete and UHPC bridges, respectively.  Similarly, CO emissions from the 
maintenance stage contributed 87% and 65% of the total emissions for the concrete and UHPC bridges, 
respectively.  These results emphasize the significant environmental burden of the maintenance stage, par-
ticularly for the concrete bridge.

5.5.  Life-cycle  Costs
Figure 7 illustrates the life cycle costs of the concrete and UHPC bridge decks over a 100-year service life, 

including material, maintenance, construction, and social costs.   At year 60, the to- tal costs (comprising 
life cycle cost net present value, LCCNVP, and social costs) of the concrete bridge ($14.8 million) surpassed 
those of the UHPC bridge ($13 .5 million).  The lower total costs of the UHPC bridge after 60 years indicate 
its economic advantage,  driven by reduced mainte- nance requirements, longer service life, and lower asso-
ciated social costs.  This demonstrates that, despite potentially higher initial costs, the UHPC bridge provides 
significant long-term cost sav- ings and sustainability benefits.   To  assess the sensitivity of how initial ma-
terial costs influence the total costs of bridge decks, various UHPC material costs ($/m3 ) were considered.  
Specifically, UHPC material costs ($/m3 ) were evaluated from two to six times the unit material cost of con-
ven- tional concrete. Accordingly, the initial unit UHPC deck costs examined were $1000/m2 , $1500/m2 , 
$2000/m2 ,$2500/m2 , $3000/m2 .  The resulting initial and total costs are summarized in Table 4. When the 
material cost of UHPC reaches five times that of concrete, the total cost of an UHPC bridge deck consistently 
exceeds that of a concrete bridge deck.
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Figure 5:  Emissions  from A1-A5:  (a) GHG emissions;  (b) NOX   emission;  (c) SOX  emission;  (d) 
PM2.5  and PM10  emissions; (e) VOCs  emission; (f) CO emission.
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Figure  6:   Life  Cycle  Emissions  from  A1-C3:   (a)  GHG  emissions;  (b)  NOX   emission;  (c)  SOX emission; 
(d) PM2.5  and PM10  emissions; (e) VOCs  emission; (f) CO emission
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Table 4:  Cost Comparison Between Concrete and UHPC Bridge Decks

Concrete UHPC

Initial Material Cost ($ /m3  ) 4,000 8,000 12,000 16,000 20,000 24,000

Initial Unit Deck Cost ($/m2  ) 1000 1000 1500 2000 2500 3000

Total Cost at Year 60 (million $/bridge deck) 14.8 6.9 10.4 13.5 16.8 20.1

Total Cost at Year 100 (million $/bridge deck) 16.3 7.4 10.8 14.1 17.5 20.9

The social costs associated with the concrete and UHPC bridge over 100 years of service life were $1.85 
million and $0.68 million, respectively. According to the Intergovernmental Panel on Climate Change 
(IPCC), while applying SCC has been effective in reducing GHG emissions, achieving net- zero GHG 
emissions by 2050 will require significantly higher carbon prices [74].  The SCC value of 116 USD 
per ton CO2  used in this study is a conservative estimate  [75].  There are studies suggest that the social 
cost of carbon could be as high as 1000 USD per ton CO2   [76].  When higher SCC were to applied, the 
UHPC bridge showed greater benefits due to the lower life-cycle GHG emissions compared to that of the 
concrete bridge.  If a lower discount rate (2%) were used, the social costs of the concrete and UHPC bridge 
would increase to $2 .85 million and $1.04 million, respectively.  These values highlight the potential for 
substantial variability in social cost estimates and underscore the importance of adopting an appropriate 
carbon price to drive meaningful emissions reductions.

Figure 7: Life cycle GHG emission

6.  Conclusions
This study compared reinforced concrete and ultra-high-performance concrete (UHPC) bridge decks over a 

100-year service life, examining structural durability, environmental impacts, and life cycle costs under iden-
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tical temperature fluctuations and exposure to de-icing materials.  Results indicate that UHPC bridge decks 
offer superior performance across all evaluated metrics.  The reinforced UHPC bridge deck demonstrated sig-
nificantly slower structural deterioration, with reinforcing bar cross-section loss of only 5.3% after 140 years, 
compared to 12.0% for the reinforced concrete deck after just 30 years of exposure to chloride ingress.  Sim-
ilarly, UHPC decks exhibited higher resistance to damage and cracking, as evidenced by deterioration ratings 
of 92.8% and lower cracking densities even after extended service.

Environmental analysis revealed that the life cycle GHG emissions of the UHPC bridge deck were 
significantly lower, totaling 952 kg CO2-eq  per m2   compared to 2595 kg CO2-eq  per m2   for the 
concrete deck.  This reduction was largely attributed to the UHPC’s superior durability, which reduced 
maintenance-related emissions from stages B1 to B3, contributing 65% of total emissions for the UHPC 
bridge deck versus 86% for the concrete bridge deck.  Comparable trends were observed for air pollutants, 
including nitrogen oxides (NOx ), sulfur oxides (SOx ), volatile organic compounds (VOCs ), particular 
matter less than 10 µm (PM10 ), and particulate matter less than 2.5 µm (PM2.5 ), and carbon monoxide 
(CO). Ongoing research into lower-carbon UHPC systems, if successful, will result in even more reduc-
tions in the life-cycle carbon emissions [77, 78].

Economically, UHPC bridge decks demonstrated long-term cost advantages despite higher initial mate-
rial costs.   By year 60, the total costs of the reinforced concrete bridge deck, including net present 
value and social costs, exceeded those of UHPC decks ($14 .8 million vs.  $13.5 million).  The substantial 
improvement in service life performance lead to cost savings in maintenance and repair expenses over 
time.  Additionally, despite the potential higher initial construction costs associated with UHPC, the 
reduced bridge deck cross-section of the reinforced UHPC bridge deck can help offset some of these 
upfront expenses.

The findings of this study emphasize the potential of UHPC materials as a sustainable and cost-ef-
fective alternative to conventional concrete materials. By minimizing environmental impacts, reducing 
life cycle costs, and extending service life, UHPC provides a compelling solution for ad- vancing sus-
tainable infrastructure in the face of increasing environmental and economic challenges.
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Abstract 
Ultra-High Performance Concrete (UHPC) surpasses conventional concrete in performance. However, pro-
ducing UHPC with consistent mechanical properties, even with an identical recipe, remains challenging. 
The quality of UHPC can be significantly influenced by material quality, environmental factors, and human 
intervention during large-scale production. This study, for the first time, takes a holistic view of the UHPC 
manufacturing process to investigate the impact of material quality, environmental conditions, measurement 
errors, and mixing and curing conditions on the final mechanical properties. This comprehensive approach to 
the UHPC manufacturing process presents two challenges. First, there is no publicly available dataset for this 
research. Therefore, 150 experiments were conducted, measuring both Compressive and Flexural Strength 
after 28 days of curing, resulting in two experimental datasets for this study. Second, this wide view increases 
data dimensionality and, coupled with the high cost of UHPC experiments, yields sparse data. Traditional 
evolutionary algorithms, while effective in feature selection, struggle in high-dimensional, small-sample data. 
To address this, an Informed Non- dominated Sorting Genetic Algorithm II (I-NSGA-II) is developed in this 
study, incorporating domain-specific knowledge to enhance prediction accuracy and solution stability. Com-
parative evaluations using different machine learning algorithms on the two experimental datasets and a data-
set generated by a test function demonstrated the significant superiority of I-NSGA-II over the classic NS-
GA-II. Finally, the significance of each studied parameter on the mechanical behavior of UHPC is discussed.

Keywords:  Ultra-High Performance Concrete; Concrete Manufacturing Process;  Ensemble-based Outlier 
Detection; Multiobjective Feature Selection; Data-Driven Modeling
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1.  Introduction
Concrete is the second-most consumed resource globally, after water, and cement production, as the cornerstone of any 

type of concrete, accounts for around 7 % of CO2  emissions worldwide [1].

Ultra-high performance concrete (UHPC) is an advanced cement-based composite known for its exceptional 
mechanical strength and durability. It typically contains a high volume of short steel fibers (around 2 % by volume) 
distributed within a dense matrix with a low water-to-binder ratio, often incorporating silica fume. This composition 
allows UHPC to exhibit uniaxial tensile hardening behavior, leading to stable microcracks and excellent transport 
properties even under demanding conditions. These characteristics make UHPC ideal for innovative applications such as 
bridge construction, structural strengthening, and waterproofing. However, the high cement and silica fume content con-
tribute to increased production costs and a significant CO2  footprint [2].

Additionally, the production process for UHPC is highly sensitive [3–6], with minor deviations from the rec-
ipe or changes in environmental conditions drastically impacting consistency and mechanical behavior, leading to 
increased waste. To address these issues, the construction industry requires an advanced support system capable of 
predicting UHPC properties in real time. Such a system would enhance quality control during production, reduce 
waste, improve product quality, and achieve cost savings.

To date, investigations into the UHPC manufacturing process have typically focused on individual factors 
rather than a comprehensive analysis of all relevant variables. Consequently, there are no published datasets that en-
compass the full  spectrum  of variables  affecting  UHPC production  and  quality.  In  this  study,  we  conduct  
a  systematic investigation of variations arising from all relevant factors around a reference UHPC production 
condition (Figure1). We examine the impact of raw material properties (such as impurities and particle size distri-
bution), dosing system errors, mixing duration and speed, and environmental conditions (affecting both raw materi-
als and specimen curing) on UHPC quality. Modeling the UHPC production process holistically presents significant 
challenges due to the complex physical and chemical subprocesses involved. Generating data for a single exper-
imental point requires 28 days, making the process extremely time-consuming and costly. To address this, a two-
phase experimental design was implemented in this study to generate 150 data points, optimally covering the input 
space. However, the high dimensionality and small sample size of the data further complicate modeling efforts. 
Standard methods, such as sequential feature selection and recursive feature elimination, often struggle to identify 
nuanced patterns in sparse data, frequently missing critical relationships and becoming trapped in local minima [7,8]. 
While evolutionary multiobjective feature selection methods can outperform grid search-based approaches, they are 
less effective when applied to high-dimensional, small-sized datasets.

Figure 1: Modeling of Reproducible UHPC with Consistent Properties1

1 Ultra-High Performance Concrete Manufacturing Process: Production and testing processes, influencing factors, and key considerations regarding the 
impact of material quality, measurement errors, and environmental conditions on final UHPC mechanical quality [6]. (El.: Electrical, CS: Compressive 
Strength, FS: Flexural Strength)
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To address these challenges, this paper focuses on dimensionality reduction in multiple steps. By injecting 
domain knowledge into the classic Non-dominated Sorting Genetic Algorithm II (NSGA-II), prediction re-
sults and solution stability are enhanced. The proposed Informed NSGA-II (I-NSGA-II) in this study address-
es high dimensionality issues with small sample sizes for evolutionary multiobjective feature selection.

To the authors’ knowledge, this is the first study to provide a holistic view of the UHPC manufacturing 
process by investigating the causal effects of various variables on final product quality consistency from an 
application perspective. Additionally, this study uniquely addresses evolutionary multiobjective feature selec-
tion by incorporating prior knowledge into the Non-dominated Sorting Genetic Algorithm II, thereby enhanc-
ing prediction performance and solution stability for high-dimensional datasets with small sample sizes. The 
contributions of this paper are summarized as follows:

•  Present a holistic approach to the UHPC manufacturing process.

•  Investigate the impact of material quality, environmental conditions, measurement errors, and mixing and 
curing conditions on reproducibility of UHPC with consistent mechanical properties, as well as the relation 
of fresh UHPC characteristics with these mechanical properties.

•  Introduce a Human-in-the-Loop Ensemble-based Outlier Detection Method, informed by expert insights, 
to enhance data quality.

2.  Related Work

2.1.  Machine Learning Applications in Predicting Concrete Mechanical Properties
The task of predicting concrete compressive strength (CS), particularly its 28-day CS, is typically addressed 

by two major approaches: traditional empirical models and modern machine learning techniques [11]. One of 
the earliest empirical methods, known as Abram’s Law [12], is:

                                                                                                                                               (1)
where a0  and a1  are empirical constants, and w and c represent the quantities of water and cement, respec-

tively. An advancement of this method is multiple linear regression [13]:

                                                                                                (2)
which incorporates the water-to-cement ratio w/c, amounts of coarse (CA) and fine aggregate (FA), and 

cement quantity (C). However, these models do not consider all the complex steps in the concrete production 
process. This makes it hard to accurately predict the properties of advanced concrete types like UHPC [14].

The significance of mix proportion parameters is emphasized by Ozbay et al. [ 15], yet environmental vari-
ables and curing conditions are overlooked. Farzampour [16] highlights certain mix proportion parameters 
while acknowledging environmental factors during curing; however, a comprehensive analysis of these as-
pects is lacking, and an in- depth examination of curing conditions is not conducted. The necessity of longer 
mixing times to achieve optimal homogeneity in UHPC, compared to CC and HPC, is pointed out by Sa-
franek [17], which also cautions against high mixing speeds due to potential thermal effects.

The initial challenge in adopting machine learning techniques for concrete research is the scarcity of com-
prehensive and reliable datasets. The datasets on Compressive Strength [18] and Slump Flow Test [19], com-
piled by Yeh from various research sources, are widely used. Despite their extensive utilization  [13, 20–28], 
these datasets exhibit significant shortcomings: limited coverage of input factors across the concrete produc-
tion process and potential inconsistencies in material quality and production conditions, including mixing and 
curing processes. These issues compromise the utility of the datasets for both academic and practical applica-
tions [6,29].

Nguyen et al. [30] employed the XGBoost model to forecast the CS of UHPC using a dataset of 931 UHPC 
mix formulations, compiled from laboratory experiments and existing literature, encompassing 17 input vari-
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ables. The study aimed to enhance precision in UHPC compressive strength estimates and facilitate the de-
velopment of new UHPC mixtures, reducing both time and costs associated with their creation. Despite these 
ambitious objectives, Nguyen et al.’s methodology presents notable limitations. The amalgamation of data 
from varied sources without stringent standardization introduces biases, potentially skewing results. More-
over, the study’s exclusive reliance on the XGBoost algorithm and intensive focus on hyperparameter tuning 
at the expense of feature selection restricts the research scope. Such a narrowed focus overlooks potential 
insights from a broader spectrum of algorithms and a comprehensive evaluation of input features’ relevance. 
Additionally, the absence of possible uncertainties in material quality, material dosing, mixing, and curing 
conditions in the analysis undermines the model’s practical applicability, given their critical role in determin-
ing UHPC’s compressive strength.

Designing a pipeline for the concrete production process with sparse data is a topic that has been rarely re-
searched [31–33]. The recently proposed pipeline for modeling concrete production and optimizing concrete 
mixtures [33] overlooks key aspects of managing high-dimensional datasets, especially the complexities of 
small datasets with high dimensionality and a comprehensive understanding of the concrete production pro-
cess, including material quality and curing time. Its approach to data generation – limited to compiling data 
from various sources – risks introducing redundancy. Moreover, the reliance on a narrow set of tree-based 
machine learning algorithms may not adequately capture the complexity of the data. The study also lacks cru-
cial preprocessing steps, such as outlier detection and appropriate handling of missing values, opting instead 
for simple mean imputation. Furthermore, its simplistic training- testing strategy, which relies on a single data 
split, fails to ensure model reliability across various data partitions.

Despite advancements in predicting concrete strength, significant gaps remain, underscoring the challenges 
in capturing the full spectrum of variables that influence end-product quality [34]. These gaps encompass lim-
ited data coverage, including material quality, measurement errors, and mixing and curing conditions, which 
lack a holistic view of the production process. These issues can cause discrepancies inUHPC’s final quality 
even with identical recipes [35]. Other challenges include systematic data generation, ineffective feature se-
lection methods struggling with the high- dimensional nature of the data, inadequate training-test strategies 
[36–45], and a narrow range of explored algorithms [ 14,46–53].

Addressing these challenges, this work takes a holistic view of the UHPC manufacturing process to inves-
tigate the effect of material quality, uncertainties in material dosing and particle size distribution, and mixing 
and environmental conditions on final mechanical UHPC properties. This is achieved by introducing an Au-
tomatic Modeling Pipeline that includes advanced data collection, data cleaning, and sophisticated feature se-
lection techniques designed to fully capture the complexities of the UHPC manufacturing process. Employing 
a diverse array of 10 machine learning algorithms and adopting a Leave-One-Out Cross Validation  (LOOCV)  
[54]  training-test  strategy  with multiple initializations, the proposed methodology ensures the reliability of 
UHPC mechanical properties predictions.

2.2.  Evolutionary Multiobjective Feature Selection
In the domain of machine learning, especially with high-dimensional and small datasets, feature selection 

(FS) is a pivotal process aimed at enhancing model interpretability, reducing overfitting, and improving pre-
diction performance by eliminating irrelevant or redundant features from the dataset [55]. Traditionally, FS 
methods have been categorized into three approaches: filter, wrapper, and embedded [7]. However, these 
methods often suffer from a high possibility of selecting redundant features, experiencing nesting effects, and/
or falling into local optima, especially in complex datasets with high dimensionality [7,8].

Feature selection faces three main challenges [8]: the exponential growth of the search space with the num-
ber of features; possibly complex interactions among features, where redundancy and complementarity sig-
nificantly impact prediction performance; and the inherent multiobjective nature of feature selection, which 
requires a trade-off between maximizing prediction performance and minimizing feature count, which are 
often conflicting objectives. Significant advancements have been made with the incorporation of evolutionary 
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multiobjective optimization (EMO) techniques into feature selection. However, due to the inherent random-
ness of the evolutionary process, the outcomes are often unstable, especially when dealing with complex 
datasets and conditions of data sparsity.

Despite the widespread adoption of multiobjective feature selection (MOFS) due to its capability in global 
optimization, which eliminates the need for prior assumptions in these algorithms, and their adeptness at han-
dling high- dimensional cases, they typically require relatively large datasets. This necessity, coupled with the 
inherent randomness of evolutionary processes, contributes to the instability of results obtained from EMO, 
especially in complex datasets with high dimensionality. As a result, they have been applied primarily to 
high-dimensional datasets but with large data sizes, especially in classification tasks [56–60]. These challeng-
es are more pronounced in scenarios involving high-dimensional datasets with limited samples, highlighting 
the need for innovative approaches.

To address the above challenges in high-dimensional datasets with small sizes, the integration of prior 
knowledge in the process of feature selection is necessary [61]. Evolutionary multiobjective feature selection 
methodologies distinguish themselves through various core design elements, including solution representa-
tion, evaluation functions, initialization  strategies,  offspring  generation  methods,  environmental  selection  
techniques,  and  decision-making processes [8]. One potential for the integration of prior knowledge is in the 
initialization of solutions and also in the mutation function of the feature selection process.

Kropp et al.  [62] present a Sparse Population Sampling technique to enhance the efficiency of optimization 
algorithms in sparse settings by seeding the population with sparse initial solutions, reflecting a strategic use 
of prior knowledge for algorithm initialization. Similarly, a study by Xu et al. [63] introduces an evolutionary 
approach that employs duplication analysis to streamline the feature selection process, leveraging patterns 
of feature redundancy to implicitly incorporate prior insights. Song et al. [64] combine feature clustering 
based on correlations with particle swarm optimization, using prior knowledge of feature relationships to 
address feature selection challenges. Ren et al.[65] develop an algorithm for sparse optimization, hinting at 
the consideration of the distribution of non-zero elements to inform its strategy, thus possibly integrating do-
main-specific knowledge indirectly. Additionally, Wang et al. [66] apply multiobjective differential evolution 
to balance feature count minimization with classification performance, potentially adjusting evaluation crite-
ria based on domain-specific feature importance, suggesting an indirect method of utilizing prior knowledge.

Despite these advancements, none of these methods explicitly utilize predefined features as prior knowl-
edge, nor do they directly address problems characterized by high dimensionality combined with small sam-
ple sizes.

There is a significant gap in addressing the challenges of EMO in MOFS tasks, particularly in achieving 
stable results with high-dimensional datasets and small sample sizes. Integrating domain expertise and prior 
knowledge can influence initial conditions and evaluation trajectories, potentially enhancing the stability and 
performance of EMO in these contexts. This gap is addressed in this work by the direct utilization of domain 
knowledge in partially initializing algorithm populations and by finely adjusting mutation probabilities to bal-
ance exploration and exploitation. This approach embeds predefined, domain-specific knowledge at the outset 
of the optimization process, ensuring that evolutionary trajectories are informed by critical insights from the 
start.

3.  Informed Automatic Modeling Pipeline for UHPC Production Process
This section outlines the establishment and application of a modeling pipeline specifically tailored for the 

UHPC production process, as depicted in Figure 2. The process begins with the Design of Experiments and 
Augmentation of Design techniques to compile comprehensive datasets. This step is followed by data prepro-
cessing to prepare the data for modeling.

The next phase introduces the Ensemble-based Feature Importance Determination [6], utilizing the pre-
pared data to identify significant features as prior knowledge for the next step. The culmination of the pipe-
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line is the block of Informed Evolutionary Multiobjective Feature and Algorithm Selection (IEM-FAS), 
which implements a systematic approach to optimize feature and algorithm selection, specifically designed 
for high-dimensional, small datasets typical in UHPC production. This phase enables the progressive and 
systematic integration of proposed features based on their significance, thereby facilitating the model’s devel-
opment in the final stage.

Figure 2: Modeling of Reproducible UHPC with Consistent Properties2

3.1.  Data Generation
A dataset of x ∈ R22 with N = 150 observations and two outputs (Compressive and Flexural Strength on 

Day 28 after the mixing process) was generated for this work. For a detailed description of this dataset, in-
cluding the complete data generation and analysis processes, readers are encouraged to refer to [67].

3.1.1.   Key Factors and Characteristics in UHPC Production Process

For this study, a fixed reference recipe with a constant amount of materials is considered. However, the 
quality of UHPC can be influenced by various critical factors throughout its production process. These fac-
tors include material quality, particle size distribution, environmental conditions during raw material storage, 
measurement errors in the dosing system, and mixing and curing conditions (refer to Table 1). To evaluate the 
quality of UHPC, alongside mechanical tests at different ages, temperature, electrical conductivity, air con-
tent, slump flow test [68], and funnel runtime are also measured in the fresh state.

In the initial stage, the effect of material quality, environmental conditions during raw material storage, and 
impurities in silica fume are examined by considering variables such as Material Delivery Batch Time (DB), 
Cement Reactivity (CR), Ingredient Moisture (IM), Ingredient Temperatures (IT), and Graphite content (GRP). 
Materials are delivered in different batches, and even those from the same company (classified as DB1 and 
DB2) may exhibit subtle differences. These distinctions, though minor, can introduce variability in material 
quality at the microstructural level,  emphasizing the need to account for such nuances in the production pro-
cess. Cement Reactivity, influenced by its chemical composition and external factors such as storage duration 
and environmental conditions, is classified based on storage time. Varying humidity levels during storage can 
alter the cement’s reactivity, impacting the final UHPC quality. Concrete raw materials in industrial settings 
are typically stored outside without protection from the sun, rain, and humidity. To simulate these conditions, 

Figure  2:  Proposed  Automatic   Modeling  Pipeline  for   Ultra-High   Performance  Concrete  Manufacturing  Process:  A Comprehensive Approach from 
Data Generation to Modeling. (DG: Data Generation, GA: Genetic Algorithm, LHS: Latin Hypercube Sampling, AoD: Augmentation of Design, DoE: 
Design of Experiments, L: Layer, DPP: Data Preprocessing, HIE-OD: Human-in-the-Loop Informed Ensemble-based Outlier Detection, FI: Feature Impor-
tance, MAE: Mean Absolute Error, P-Fs & Alg.: Proposed Features & Algorithm)



84
     © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the 
Creative Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Artificial Intelligence and Sustainable Materials Vol.1 Mason Publish Group

the temperature of raw materials before mixing is artificially set to different values. In addition to the fixed 
water value in the reference recipe, variations simulating humidity are considered. One of the crucial charac-
teristics of UHPC is its low water content formulation; thus, impurities that absorb water are significant. High 
carbon content in silica fume can reduce workability by absorbing water, impacting cement hydration and 
final UHPC quality.

The formulation of the recipe, including appropriate ratios of aggregates, Superplasticizers (SPP), and sili-
ca fume, is critical for UHPC’s strength and durability. Precision in measuring these ingredients and potential 
measurement errors, along with variations in particle size distribution, introduce complexities. Although these 
errors may be small (see Table 1), they can lead to significant variations in UHPC quality, especially when 
amplified by mixing parameters such as Speed (MS) and Duration (MD). Properties of fresh concrete, includ-
ing Temperature (FCT), Electrical Conductivity (EC), Air Content (AC), Slump Flow (SF), and Funnel Run-
time (FR), are crucial for assessing homogeneity, workability, and structural integrity of UHPC. These factors 
are considered to predict final product quality and provide feedback to operators to avoid off-spec products at 
the fresh stage of UHPC.

In real UHPC applications, the product is used worldwide under varying environmental conditions. To sim-
ulate this variability, different curing conditions, detailed in Figure 3, involving two main stages, are designed 
in this study. Initially, the UHPC transitions from paste to a hardened state with minimal strength. During the 
first 24 hours, it is either stored in a humidity-controlled cabinet at 90 % relative humidity and 20 ℃ (Figure 
3a) or covered with plastic film and stored at 20 to 40 ℃, depending on environmental conditions (Figure 
3b). After the first 24 hours, the specimens are demolded and cured until day 28. They are either maintained 
in plastic film at 20 ℃ (Figure 3c) or submerged in water with temperatures varying from 20 to 40 ℃(Figure 
3d). Integrating these conditions into the developed pipeline provides an in-depth understanding of UHPC 
production, aiming for optimization and consistency in quality.

Figure 3: Illustration of Various Curing Conditions Employed in this Work on UHPC Production Process

By analyzing information at the fresh stage and adjusting curing conditions, operators can avoid waste and 
achieve the desired product quality.

3.1.2.  Experimental Design and Methodology

This study initiated a structured experimental campaign, comprising 150 designed experiments performed 
at G.tecz Engineering GmbH in Germany, to delve into the UHPC manufacturing process. Addressing the 
challenges of data generation in this field, particularly the aspects of cost and time, we implemented a du-
al-phase approach: the Screening Phase for initial data analysis [6] and the Optimal Phase for detailed process 
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modeling. The first phase established objectives, identified relevant variables, and carried out preliminary 
analyses, utilizing the Taguchi Orthogonal Array (TOA)  [69]. TOA is favored for its  efficiency in managing 
high-dimensional spaces with a limited number of experiments, ensuring a balanced distribution of input vari-
ables. In the subsequent phase, the experimental design was augmented through a process incorporating Latin 
Hypercube Sampling (LHS) [70], which strategically places additional points within the input space to opti-
mize the experimental layout. A Genetic Algorithm [71] maximized the mean distance between these points 
(S-Optimality [72]), facilitating a comprehensive examination of the input space. The optimal integration of 
TOA and LHS data points established a robust foundation for further analysis.

The Screening Phase analysis led to the elimination of three variables: Cement Reactivity (CR), Mixing 
Speed (MS), and Mixing Duration (MD) [6]. These were determined to have negligible impacts on the final 
quality of the concrete and were therefore excluded from further consideration. For a more detailed under-
standing of the Screening Phase methodology and its results, interested readers are encouraged to consult [6].

3.1.3.  General Setting

Throughout the experiments, the same mixing tool was used, with controlled environmental conditions for 
material storage and production to mitigate seasonal variations. The temperature of the mixer chamber was 
consistently maintained near the ambient laboratory temperature of 20 ℃ and was monitored before each ex-
periment to ensure minimal impact on process variability.

3.2.  Data Preprocessing
The collected data undergoes two stages of preprocessing: preliminary processing and outlier detection.

3.2.1.  Preliminary Data Processing

Data standardization and normalization are utilized to enhance model performance. Standardization scales 
data to have a mean of zero and a standard deviation of one, while normalization scales data to fall within the 
range of [0, 1]. This normalization improved consistency and comparability across features, leading to better 
model performance in this study. As next step, to reduce dimensionality and prevent multicollinearity, Pear-
son’s correlation coefficient [73] is used to identify and remove highly correlated inputs. This process helps in 
simplifying the model and improving its generalizability.

Iterative Imputation is employed to handle missing data, which constitutes 4 % of the dataset. Traditional 
imputation methods like mean or median imputation often fail to capture complex feature correlations and 
can result in biased estimates [74, 75]. Iterative Imputation  [76–78], on the other hand, treats each variable 
with missing values as a function of other variables in a sequential process, offering a refined estimation that 
respects complex interdependencies among variables. This method, implemented using Scikit-Learn’s Itera-
tiveImputer [79], employs Bayesian Ridge Regression [80–82] – the default model for the IterativeImputer 
function – to iteratively model and predict missing values, ensuring a more accurate and robust handling of 
the incomplete UHPC data.

3.2.2. Human-in-the-Loop Informed Ensemble-based Outlier Detection

Traditional techniques often  struggle  to identify  outliers in  complex datasets  [83].  Several  outlier  de-
tection methodologies, each beneficial in specific contexts, have been developed. These include statistical 
methods that detect deviations through probabilistic models, distance-based approaches that assess spatial 
separation, clustering-based strategies that identify outliers as ill-fitting data points within clusters, and densi-
ty-based methods that pinpoint outliers due to their relative isolation in the data space [84,85].

However, these methods face challenges in specific scenarios, such as with small or sparsely distributed 
datasets, which are common in Design of Experiments contexts. This issue is particularly pronounced in 
high-dimensional datasets with small sample sizes, where the goal is to evenly cover the input space. Their 
reliance on proximity or density can lead to inaccuracies in outlier detection when data points lack sufficient 
neighborhood, cluster, or density characteristics (see Figure 4), potentially resulting in critical errors in mea-
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surement outputs  [83, 85–88]. Furthermore, traditional methods such as box plots, histogram plots, and lin-
ear regression, which primarily focus on linear relationships, prove inadequate in non-linear contexts [83].

Figure 4: Visual Representation of an L9(33 ) Orthogonal Array [69]: Given the sparse data design by 
Taguchi Orthogonal Array, data points cannot be selected based on their distance, density, or neighborhood.

This paper introduces a novel method that combines expert knowledge and Human-in-the-Loop (HITL) 
insights with the robustness and generalization capabilities of ensemble methods to enhance outlier detection 
reliability in our case study. The proposed method, named Human-in-the-Loop Informed Ensemble-based 
Outlier Detection (HIE-OD) (Figure 5), is founded on five key principles:

• Diverse Base Learners

•  Application of the Law of Large Numbers

•  Domain Expertise for Informed Filtering

•  Majority Voting for Ensemble Decision to Recommend Possible Outliers

• HITL Intervention for Final Decision-Making

Figure 5:  Human-in-the-Loop  Informed  Ensemble-based  Outlier  Detection  (HIE-OD): Advancing outlier 
detection with informed ensemble-based  method,  leveraging  expert  knowledge  and  Human-in-the-Loop  

for  precise  anomaly detection. Possible outliers, recommended by the informed ensemble component of 
HIE-OD, are then subject to final decisions made through human intervention in a HITL process.

An ensemble learning approach, inspired by the wisdom  of  the   crowd concept, enhances decision-mak-
ing in machine learning by leveraging collective intelligence [89]. This method aggregates insights from 
various base learners (BLs), each contributing unique perspectives, thereby improving generalization and re-
ducing overfitting [89]. The ensemble aims to achieve or exceed the average performance of its base learners, 
with diversity in the ensemble reducing error, as demonstrated by:
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                                                                  (3)
where Errorindividuals  is the ensemble base learners’(BLs) errors, M is the count of BLs, and Ambiguity 

measures their diversity [90]. This illustrates how diversity minimizes the overall error [91]. Depending 
on the application, the Law of Large Numbers supports this principle by indicating that a larger number of 
observations leads to a sample average that more accurately reflects the population mean, which is vital for 
effective outlier detection:

                                                                                                                  (4)
Here, ON  represents the average of N observations, and μ is the mean value of the population, highlighting 

the improved reliability with an increasing number of observations. This convergence, as observed in our 
case study, assumes that the observations are independent, identically distributed, and exhibit finite variance. 
To leverage this principle, the proposed outlier detector incorporates 10 diverse BLs, ranging from linear to 
non-linear, parametric to non-parametric, and simple to complex algorithms, as illustrated in Figure 5.

For a dataset comprising N data points {d1; d2; … ; dN } and a set of models, the residual Rij for the j-th data 
point

against predictions from all models is calculated by the proposed method as:

                                                                                                           (5)
where yj  is the actual value for the j-th data point, ij(dj) denotes the predicted value for the j-th data point 

by the i-th model. A data point is flagged as a possible outlier if:

                                                                                                           (6)
where    is the threshold defined by expert knowledge.

The ultimate decision on outliers is determined using a wisdom  of  the  crowd approach, which requires 
more than 50 % agreement among the algorithms:

                                                                                               (7)
where C(d) denotes the consensus for data point d , fi (d) represents the decision function of the i-th BL, M is the 

total number of BLs, and    is the consensus threshold set at 15 MPa. The indicator function 1 returns 1 if Ri (d) >   
. A data point d is considered a possible outlier if C(d) exceeds 0.5, indicating majority consensus. If C(d) ex-
ceeds 0.5, the data point d is recommended to the HITL for further analysis. The 50 % threshold is the minimum 
required for the effectiveness of wisdom  of  the  crowd   (majority  voting), as a binary decision process 
requires more than half of the votes to favor an option for it to be selected [92]. Setting the threshold below this 
compromises the purpose of majority voting, while setting it above risks missing true positives. In this study, 
setting the threshold at 60 % ensures that at least 6 out of 10 base learners agree, which balances minimizing false 
positives with maintaining the effectiveness of the wisdom of the crowd. By leveraging a blend of multiple 
BLs, informed detection criteria, and a consensus- and HITL-enhanced decision framework, the HIE-OD presents 
a comprehensive, sophisticated, and flexible approach to outlier detection.

3.3.  Ensemble-based Feature Importance Determination
Within the context of this work, the Ensemble-based Feature Importance Determination (E-FID) framework 

has been deployed to analyze factors influencing UHPC quality. Unlike approaches that rely on a single 
model, the ensemble method is recognized for integrating insights from a diverse array of predictive algorithms 
[89]. This strategy is primarily adopted to overcome limitations inherent in individual models, such as bias and 
variance issues [91]. Furthermore, it is particularly effective in scenarios characterized by high dimensionality 
and limited data, where the ensemble approach enhances generalization and reduces the risk of overfitting [89]. By 
synergistically leveraging the strengths of multiple algorithms, the ensemble framework significantly enhances 
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the reliability of feature importance rankings. This approach effectively mitigates the the law of ensemble learning 
described in Equation3and leverages the Law of Large Numbers as detailed in Equation4, facilitating a nuanced un-
derstanding of the critical factors influencing UHPC quality.

For a comprehensive exposition of the E-FID framework’s development and operational specifics, readers are 
referred to [6].

3.4.  Informed Evolutionary Multiobjective Feature and Algorithm Selection Framework
In the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [93], used for feature selection, an individual 

(chromosome) x is represented as a binary vector:

x = [x1; x2; … ; xn]                                                                                                                                             (8)

where n is the number of features, and  each xi  ∈  {0; 1} indicates the absence (0) or presence (1) of the i-th 
feature. The fitness of an individual is evaluated through multiple objective functions. Common objectives for fea-
ture selection in complex tasks include maximizing model prediction performance and minimizing the number of 
selected features.

The dominance relation between two individuals x and y in the case of a minimization problem is defined as:

x dominates y if ∀i; fi(x) ≤ fi(y) and ∃j; fj(x) < fj(y)                                                                  (9) 

where fi represents an objective function.

Crowding distance is a measure of the density of the solution space around a given individual, which 
helps maintaining diversity in the population. Crossover and mutation are genetic operators used to create new in-
dividuals [93]. These operators are typically implemented as follows:

•  Crossover combines segments of two parent chromosomes to produce offsprings, introducing genetic diversity 
into the population. A common method used is single-point crossover.

•  Mutation alters genes within a chromosome with a probability Pmut to introduce variability, often imple-
mented as bit-flip mutation.

The algorithm iteratively performs selection, crossover, and mutation to generate new populations. After 
each iteration, both the parent and offspring populations are sorted based on non-dominance and crowding 
distance, preparing them for the next generation cycle [93].

The set of optimal solutions X∗  is defined as [94]:

                                                                              (10)

where l is the number of objectives, X is the set of all possible solutions, and fi  are the objective functions 
to be minimized (or maximized, depending on the problem definition).

In the proposed Informed Non-dominated Sorting Genetic Algorithm II (I-NSGA-II), an individual 
(ind) is represented as a binary vector (see algorithm 1):

X = [xn; hk] = [x1; x2; … ; xn; h1 ; h2; … ; hk];                                                                      (11)

where xi  ∈   {0; 1} indicates the absence (0) or presence (1) of the i-th feature, and hj are hyperparameters 
for the machine learning algorithm. The total number of features is denoted by n, and the number of hyperparame-
ters by k.

A crucial aspect of our algorithm is the incorporation of predefined features based on prior knowledge. 
Let S ⊆ {1; 2; … ; p} represent the set of indices corresponding to these predefined features (see Figure 6). 
During the initialization and mutation phases of the algorithm, these predefined features are enforced by setting xi 
=  1 for each i ∈ S. Mathematically, this enforcement is represented as:

                                                                                                                                       (12)
This approach ensures the inclusion of predefined features in each individual of the population across generations, 
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thereby enhancing the robustness of the feature selection process. However, to introduce a controlled degree 
of variability and to avoid stagnation in local optima, the mutation operation is applied with a probability Pmut, typical-
ly a small value. For predefined features, the mutation probability is effectively reduced or nullified, denoted by 

to minimize the alteration of these features. The mutation step for the i-th feature can thus be expressed as:

                                                                                (13)
where rand(), a function, generates a real-valued random number between 0 and 1.

Algorithm 1 I-NSGA-II:

Require:  D =  {X; y} , where X is the feature matrix, y is the target variable, and N is the number of data 
points. Require:  Predefined features Fpredef with selection probability P\* jc3 \* hps14 \o\al\s\up 5premut

def, 
and Mutation selection probability Pmut.

Require: Population (pop) size Q, Number of generations G, Crossover probability Pc, Mutation 
probability Pm.

1:  function INITIALIZEPOP(Q; F)

2:         for i ← 1 to Q do

3:                 indi ← initialize with Fpredef and random features

4:                  indi ← append random hyperparameters

5:         return pop

6:  function CALCULATEFITNESS(ind; Dtrain)

7:         Xsubset  ← X[Fi]; Fi ← feature subset from ind

8:          Hi ← hyperparameters from ind

9:         Train/Validate model on Xsubset using Hi (CV=10)

10:          fit1   ← model’s R2  score; fit2   ← −count(Fi)

11:          return weighted fitness (2 . fit1 ; 1 . fit2 )
12:  function MUTATE(ind; Pmut; P\* jc3 \* hps14 \o\al\s\up 4premut

def; Fpredef)

13:          for each feature f in ind do
14:                if f ∈ Fpredef and rand() > P\* jc3 \* hps14 \o\al\s\up 4premut

def then

15:                        Keep f unchanged

16:                 else if f ∉ Fpredef and rand() < Pmut then
17:                        Toggle inclusion of f in ind

18:                   else
19:                        Keep f unchanged

20:          for each hyperparameter h in ind do
21:                if rand() < Pmut then

22:                         Adjust hyperparameter h

23:         return ind

24:  function GA(Dtrain; Q; G; Pc; Pm; Pmut; P\* jc3 \* hps14 \o\al\s\up 4premut
def)
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25:          pop ← INITIALIZEPOP(Q;  F)

26:         for g ← 1 to G do

27:                 Assess and assign fitness to each ind ∈ pop using CALCULATEFITNESS(ind; Dtrain)

28:                 offspring ← apply crossover with probability Pc on selected parents; Select parents from pop

29:                Apply mutation with probability Pm on offspring

30:                 for each ind ∈ offspring do

31:                        ind ← MUTATE(ind; Pmut; P\* jc3 \* hps14 \o\al\s\up 5premut
def; Fpredef)

32:                        Ensure compliance with Fpredef
33:                        Recalculate fitness using CALCULATEFITNESS(ind; Dtrain)

34:                 pop ← next generation from pop∪ offspring

35:          Fopt; Hopt  ← best ind in pop based on multiobjective criteria
36:         return Fopt; Hop
37:       for each run r ← 1 to R do       ⊳ LOOCV with different random initialization of the algorithm in 

each iteration.
38:          Dtrain; Dtest ← Split dataset D using LOOCV

39:         F pt ; H pt  ← GA(Dtrain; Q; G; Pc; Pm; Pmut; P\* jc3 \* hps14 \o\al\s\up 4premut
def)

40:         Evaluate F pt ; H pt on Dtest
41:          Record the true and predicted values

Figure 6: Overview of I-NSGA-II Search Space for Feature Selection: I-NSGA-II is designed to explore a constrained search 
space, prioritizing predefined features (X1  to Xp ) with a high likelihood of selection during each individual generation. 
It aims to identify the most significant features (Xp+1  to Xm ) whose interactions with  predefined features greatly impact 

the objectives. This structure limits the search space by integrating prior knowledge into the search space of NSGA-
II, enhancing its performance and ensuring stable solutions by addressing the challenges of multiobjective feature selection, 

especially for high-dimensional data with small sample sizes.

In the mutation operation, if neither condition for mutating predefined (i  ∈  S) nor non-predefined features 
is satisfied – specifically, when rand()   for predefined features and rand()  ≥  Pmut  for others – the 
feature indicator xi  remains unaltered ( ). This otherwise case ensures the integrity of the individual 
by stabilizing the feature composition against unnecessary random perturbations, thereby preserving the current 
selection state for both sets of features and maintaining the evolutionary approach’s balance between exploring the 
solution space and respecting predefined feature sets. This strategic design guides the genetic algorithm towards 
effective solutions that adhere to problem-specific constraints.

In the optimization framework of the I-NSGA-II, emphasis is placed on both maximizing the model’s 
predictive accuracy and minimizing the size of the feature set. Weights are assigned to reflect the relative 
importance of these objectives, with predictive accuracy deemed twice as significant as the simplicity of the 
model. Consequently, the objective formulation is expressed as:
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where f1 (x) = R2(x) represents the model’s predictive accuracy. 

The simplicity criterion,  the model’s complexity by the sum of selected features, 
with each xi indicating the inclusion (1) or exclusion (0) of the i-th feature. This weighting scheme methodical-
ly emphasizes the enhanced priority of accuracy over minimizing feature count, balancing the trade-off between 
high predictive performance and model simplicity.

The general process of the I-NSGA-II is recorded in Algorithm 1. The core of our methodology relies on a data-
set D = {X; y} , where X represents the set of feature values, y is the target variable value, and N is the num-
ber of data points. The algorithm commences with a predefined set of features Fpredef and operates under specific 
operational parameters.

The initialization phase, InitializePop, creates a population of Q individuals, each initialized with the 
prede- fined feature set Fpredef and a random selection of additional features, augmented by randomly chosen hyper-
parameters. The fitness of each individual is assessed in the CalculateFitness function. This function extracts a 
feature subset Fi and hyperparameters Hi  from each individual, trains a model on Xsubset  using Hi, and cal-
culates fitness based on model accuracy and the count of features used. The dual objectives are to achieve high 
accuracy and minimize the feature set, while also respecting the constraints imposed by predefined features.

Mutation, handled by the Mutate function, toggles the inclusion of features in an individual based on Pmut, pro-
vided the features are not part of Fpredef. The genetic algorithm (GA), detailed in the GA function, iteratively 
performs the following steps: evaluates the population, selects parents, and applies crossover and mutation according 
to Pc and Pm. Offsprings undergo mutation, compliance adjustment to ensure adherence to predefined feature con-
straints, and fitness recalculation to update their fitness values based on the new feature set and hyperparameters. After 
G generations, the algorithm selects the best individual based on the optimized feature subset Fopt  and hyperparam-
eters Hopt.

In the nested validation and evaluation loop, a single test data point is extracted at the start of the IEM-
FAS framework using the LOOCV mechanism for the final test phase. Then, for training and validation of each 
algorithm and finding the optimal features and hyperparameters in the I-NSGA-II algorithm, 10-fold CV is used 
on the training data from LOOCV. After finalizing the model and identifying the optimal features and hyperpa-
rameters, the model is evaluated using the unseen data points from LOOCV. These steps are repeated across 
LOOCV with different initializations for each fold, and the average prediction performance and frequency of 
selection of each feature are recorded.

3.4.1.  Parameter Optimization for I-NSGA-II

To configure and run the I-NSGA-II algorithm optimally, we conducted a series of trial-and-error experiments 
to determine the most effective parameter values. The parameters include a mutation selection probability Pmut  = 
0:05, a population size Q  =  100, a number of generations G  =  100, a crossover probability Pc    =  0:9, and a 
mutation probability Pm  = 0:2.

The objective function, also known as the fitness function, consists of two objectives: prediction accuracy and 
the number of features. To reflect the importance of prediction accuracy over the number of features, the fitness 
function assigns a weight of 2 to prediction accuracy and a weight of 1 to the number of features. The prediction 
accuracy is

calculated using the R2  metric, chosen after evaluating several metrics including MAE, RMSE, R\* jc3 \* hps14 
\o\al\s\up 32adj, and R2 .

The search space for feature selection in I-NSGA-II consists of 16 possible bits. Of these, 6 bits are allocated 
for predefined features and 6 bits for other features, allowing 4 features to be potentially removed from the 
pool of 16 features in each run. These configurations are also derived from trial-and-error experiments aimed at 
achieving the best performance.
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3.4.2.  Machine Learning Algorithms

Within the IEM-FAS framework (see Figure 2), the feature selection methodology employs a comprehensive 
set of 10 different machine learning algorithms, ranging from parametric and non-parametric methods, including 
simple linear, advanced ensemble, and Bayesian approaches. The specific algorithms used are Multiple Linear Re-
gression (MLR) [95], Partial Least Squares (PLS) [95, 96], Kernel Ridge Regression (KRR) [95, 97], K-Nearest 
Neighbors (KNN) [95, 98], Support Vector Regression (SVR) [95, 99], Decision Tree (DT) [95, 100], Ran-
dom Forest (RF) [95, 101], Gradient Boosting  (GB)  [95, 102],  Extreme  Gradient Boosting  (XGB)  [103],  
and  Gaussian  Process Regression (GPR) [95, 104]. The selected machine learning algorithms are commonly 
used in industry prediction applications [105], particularly for predicting the mechanical properties of concrete.

3.4.3.  Evaluation Metrics of Models Performance

In the process of evaluating the performance of trained models within the testing phase, a comprehensive approach is 
adopted, utilizing different evaluation metrics tailored specifically for regression tasks. The R2  metric provides a mea-
sure of how well variations regarding the average of output in the observed outcomes are explained by the model:

                                                                                                                             (15)

The  adjusts the R2  statistic based on the number of predictors in the model, preventing overestimation of the

model’s explanatory power when more predictors are added:

                                                                                                              (16)

where D is the number of predictors. The  thus accounts for the model’s complexity and is always lower than or 
equal to R2 .

The MAE (Mean Absolute Error) measures the average magnitude of the errors in a set of predictions, without 
considering their direction:

                                                                                                                            (17)

TheMAPE (Mean Absolute Percentage Error) expresses the error as a percentage of the observed values, providing a 
simple interpretation of the error magnitude:

                                                                                                                  (18)

TheRMSE (Root Mean Squared Error) is a quadratic scoring rule that measures the average magnitude of the error.

It is calculated as the square root of the average squared differences between the predictions and actual observa-
tions:  

                                                                                                                   (19)

In all metrics, yi represents the observed values, i the predicted values, y the mean of the observed values, and N 
the number of observations.

3.5.  UHPC Manufacturing Process Modeling
Building on the ranked features and the best algorithm (with its optimal hyperparameter configuration) proposed 

by the IEM-FAS framework (see Figure 2), this section outlines a streamlined modeling phase, as detailed in Al-
gorithm 2. The methodology employs the proposed algorithm with LOOCV, beginning with data loading and 
normalization. The approach incrementally introduces features based on their importance ranking determined by 
the E-FID and the IEM-FAS frameworks, preparing them alongside the target variable for analysis.
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Algorithm 2 UHPC Production Process Modeling

1:  function PREPAREDATA(data, features, target)

2:         X ← data[features]

3:         y ← data[target]

4:          Normalize X to have values between 0 and 1

5:         return X, y

6:  function LOOCV(X, y)
7:         Initialize predictions as empty list

8:         for each split in LOOCV of X, y do

9:                Train model on the training set

10:                 predictions ← Predict on the test set and save it

11:          return average of the MAE, R2 ; 

12:  function MAIN

13:          data ← A dataset with X ∈ RN×D  and Y ∈ RN×1

14:         Define features, target

15:         for i ← 1 to length(features) do

16:                 currentFeatures ← features[1 : i]

17:                X, y ← PREPAREDATA(data, currentFeatures, target)

18:                avgMAE, avgR
2 ; avg  ← LOOCV(X, y)

The model is trained and evaluated iteratively, using each data point as a test case while the remaining data points 
serve as the training set. During this process, features are systematically added according to their importance to assess 
their cumulative impact on the model’s performance. The performance metrics, R2 , , and MAE, are calculat-
ed based on predictions made on the test data. This approach allows for an effective evaluation of the model’s pre-
dictive accuracy and provides insight into the impact of each feature as recommended by the IEM-FAS framework.

4.  Results and Discussions

4.1.  Assessing Data Preprocessing

4.1.1.   Correlation Patterns in Studied Factors and UHPC Mechanical Properties

In the preprocessing phase of this study, based on the results of the Screening Phase [6], which led to the 
removal of three features (Cement Reactivity, Mixing Speed, and Mixing Duration), 19 factors from an initial 
pool of 22 (Table 1) were selected for further analysis based on their relevance to the final quality of UHPC.
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Table 1: This dataset [67] includes a primary Ultra-High Performance Concrete (UHPC) recipe, highlighting 
variations in material quality, potential measurement errors in the primary recipe, mixing conditions, fresh 

concrete characteristics, and curing conditions. The cement and silica fume content are fixed across all 
experiments in this study.

To refine the dataset and reduce dimensionality, correlations among the factors were examined using the Pearson 
correlation method. The correlation analysis, illustrated in the heatmap presented in Figure 7, identified 
strong correlations among certain pairs of variables: SAI and SAII (Sand Type I and II), FLI and FLII (Filler 
Type I and II), and IT and FCT (Ingredient Temperature and Fresh Concrete Temperature). Due to the high cor-
relations, SAII, FLII, and FCT were removed to avoid factor redundancy. This decision led to a reduction of the 
factor pool to 16.

Subsequent correlation analysis between the refined set of input factors and key outputs, specifically Compressive 
Strength at day 28 (CS28) and Flexural Strength at day 28 (FS28), revealed significant relationships. This anal-
ysis highlighted the impact of curing temperature during the second stage (CT28) on both mechanical properties 
of the final UHPC product. Notably, the conditions under which specimens were cured – whether submerged un-
derwater or encased in air within a plastic film from day 2 to day 28 (CC28) – were determined to critically affect 
FS28.

This highlights the importance of maintaining a continuously wet surface on UHPC during the curing process. 
Due to its high binder content (cement and silica fume) and low water content, UHPC does not contain enough 
water to fully hydrate all the binders. As a result, it is essential to compensate for this water deficit by absorbing 
moisture from the environment.
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Figure  7:  Pearson  Correlation  Coefficients  for  Variables  in  UHPC  Production:  This  heatmap  outlines  the  
correlations between material composition, processing  parameters, and environmental factors, as well as their 

correlations with the compressive ( CS28 ) and flexural (FS28 ) strengths of UHPC at day 28 of curing. For a detailed 
explanation of the variables used in this heatmap, see Table 1.

4.1.2.  Outlier Detection by HIE-OD

Figure 8 illustrates the distribution of the outputs (CS28 and FS28) using box, histogram, and scatter plots. 
The box and histogram plots suggest the presence of two potential outliers. As discussed in Section 3.2.2, and 
further evidenced by the scatter plots in Figure 8, these data points do not provide a clear basis for assessment using 
clustering and distance-based perspectives commonly applied in outlier detection.

During the first stage of outlier detection, the two potential outliers identified from the box and histogram 
plots were examined and confirmed as true outliers by domain experts. Additionally, one data point, which exhib-
ited some missing values in fresh concrete characteristics and outputs, was also identified as problematic. Conse-
quently, these three data points were removed from the initial dataset of 150 data points, reducing the dataset to 147 
data points.

The results from the HIE-OD method are detailed in Table 2. This table provides a comprehensive summary 
of votes from an ensemble of 10 BLs for the detected experiments, indicating that the experiments listed were iden-
tified as possible outliers by at least one BL. Experiments not listed in the table were not detected as possible outliers 
by any of the 10 BL.

The criterion for outlier detection by each BL was set to exceed an informed threshold of θ = 15 MPa in residu-
als. The criterion for outlier detection by the informed ensemble-based part was established using majority voting, 
with a benchmark of six or more votes required for potential outlier identification. This threshold is depicted in 
Table 2with red rectangles for easy reference. The experiments marked with red rectangles – numbers 4, 16, 29, 
44, 54, 96, 98, and 144 – were identified by the informed ensemble-based part as potential outliers. This threshold 
of six votes was strategically chosen to balance the need for sensitivity in detecting outliers against the risk of false 
positives.

Remarkably, each data point identified as an outlier by the informed ensemble part of the HIE-OD method, using 
the majority voting criterion, underwent subsequent examination by domain experts. This review process validated 
the ensemble method’s recommendations, with all highlighted experiments being confirmed as true outliers.

Following expert validation, all eight data points recommended as outliers were removed from the dataset. This 
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action reduced the dataset to a total of N = 139 data points.

Figure 8: Distribution of Compressive Strength (CS28 ) and Flexural Strength (FS28 ) at Day 28 Using Box, 
Histogram, and Scatter Plots: The box and scatter plots reveal one possible outlier in both outputs, while the 

histograms suggest two possible outliers, especially for CS28.

Table 2: Summary of detection outcomes from 10 base learners on data points identified as containing 
potential outliers, with red rectangles highlighting experiments receiving six or more votes indicating a 

consensus on outlier status. All flagged data points were validated by domain experts. (BL: Base Learner, 
Exp.: Experiment)

4.2.  Gaining Insights into Feature Importance for UHPC Mechanical Properties Using 
E-FID

The feature importance analysis for CS28 (Figure9) highlights the paramount importance of Curing Temperature 
from day 2 to 28 (CT28), underscoring the critical role that environmental conditions play during the second 
phase of the curing process. Interestingly, the Initial Curing Temperature (CT1) on the first day of curing also 
emerged as a significant factor, albeit with less influence than CT28. This suggests that the curing conditions 
on the first day establish a significant foundational strength, which is further enhanced by the curing conditions 
from day 2 to day 28. This confirms the well-known fact that higher temperatures accelerate cement hydration. 
However, it is equally important not to overlook the need for sufficient moisture in such environments.

Ingredient Moisture (IM) shows a crucial impact on the final compressive strength of the UHPC, highlighting 
the importance of moisture content within the mix. Similarly, Average Power Consumption (APW), while not a con-
trollable factor, serves as an informative indicator, reflecting the rheology of concrete paste (energy input) during 
the mixing process and helping to predict the final compressive strength. The addition of Graphite (GRP) (to simu-
late the impurity in silica fume) and of the Curing Conditions from day 2 to day 28 (CC28) also play notable roles 
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in the analysis. The presence of carbon (Graphite) as an impurity in silica fume significantly absorbs water in 
the mixture, leading to a reduction in flowability. This is a critical factor, especially in UHPC, which has a very 
low water content.

For FS28, as detailed in Figure 9, the dominance of curing temperature from day 2 to day 28 (CT28) remains 
unchallenged, reinforcing the overarching influence of the curing processes. However, in a notable departure from 
the findings related to compressive strength, the curing condition from day 2 to day 28 (CC28) stands out as the second 
most critical factor for flexural strength as well. This distinction highlights the different impact of environmental 
conditions on the material’s resistance to bending stresses.

Ingredient Moisture (IM) and initial Curing Temperature (CT1) retain their significance, reflecting a consis-
tent theme across both strength characteristics regarding the importance of moisture and initial curing conditions. 
Notably, Air Content (AC), measured after the mixing step in fresh concrete, emerges as a more informative factor 
for predicting FS28 compared to CS28. This indicates its role in affecting the material’s flexural properties, likely 
through its influence on the pore structure and distribution within the concrete matrix. The comparative analysis of 
CS28 and FS28 results from the E-FID framework reveals a nuanced landscape of feature importance, with several 
key takeaways:

•  Curing Conditions’ Primacy: The curing temperature at various stages unequivocally influences both compres- 
sive and flexural strength, emphasizing the need for controlled environmental conditions throughout the curing 
process.

•  Differential Impact of Factors: Certain factors, such as CC28 and AC, exhibit a varied influence on CS28 versus 
FS28. AC, particularly, serves as an informative indicator rather than a direct influencing factor, highlighting its 
role in affecting the material’s flexural properties through its influence on the pore structure and distribution.

However, this aspect needs further study, as the presence of carbon is expected to influence compressive strength sim-
ilarly to flexural strength.

•  Importance of moisture and energy consumption of the mixer: The consistent significance of Ingredient Mois-
ture (IM) across both analyses underscores the fundamental role of ingredient quality in determining UH-
PC’s mechanical properties. This further emphasizes the necessity of maintaining adequate moisture levels to ensure 
proper binder hydration and optimal performance. Simultaneously, APW, as an informative indicator of mixing 
efficiency, aids in predicting UHPC’s strength outcomes rather than directly influencing them.

4.3.  Enhanced Predictive Modeling of UHPC Mechanical Properties Using I-NSGA-II

4.3.1. Impact of I-NSGA-II on Model Performance and Algorithm Selection

This study presents a comprehensive evaluation of various machine learning algorithms for predicting the CS28 and 
FS28 of the UHPC. In the IEM-FAS framework, each algorithm is trained and tested using the LOOCV approach, 
with different random initializations in each fold. The entire process employs both I-NSGA-II and NSGA-II for 
both outputs. After training, the performance of each model is tested using the test dataset based on several metrics: R2 , 
MAE, MAPE, and RMSE. The results from the average of all folds in the LOOCV loop during the test step are sum-
marized in Table 3afor CS28 and in Table 3bfor FS28.

In Table 3a, models employing the I-NSGA-II demonstrated substantial improvements in R2  values. For in-
stance, the MLR model experienced an increase from 72.47 % under traditional Feature Selection (FS) using 
NSGA-II to 76.37 % with Informed Feature Selection (I-FS) using I-NSGA-II. This improvement indicates a more 
robust model fit, which can be attributed to the effective integration of domain-specific knowledge within the fea-
ture selection process. Moreover, reductions in MAE, MAPE, and RMSE across models further validate the effica-
cy of I-NSGA-II. KRR and GB also exhibited significant improvements with the application ofI-NSGA-II. Notably, 
KRR demonstrated an increase in R2 from 62.38 % to 76.26 %, marking one of the highest improvements observed. 
This enhancement is accompanied by a notable decrease in RMSE from 7.33 to 5.66, underscoring the effectiveness 
of I-NSGA-II in reducing prediction errors.

In the context of flexural strength (FS28), the SVR model demonstrated the most substantial gains with I-NSGA- 
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II, as detailed in Table 3b. The R2  value surged from 72.62 % under NSGA-II (FS) to 81.75 % under I-NS-
GA-II (I-FS), highlighting a significant enhancement in the model’s ability to capture the variability in flexural 
strength data. Moreover, the MAE reduced dramatically from 1.56 MPa to 0.93 MPa, indicating a higher accu-
racy in the model’s predictive performance. Similarly, the MAPE and RMSE mirrored this trend, improving from 
8.54 % to 7.08 % and from 2.04 to 1.37, respectively. GPR also showed improved performance metrics with 
the application of I-NSGA-II (FS). The R2 value increased from 72.67 % to 81.70 %, and there were significant 
reductions in both MAE, MAPE, and RMSE, reinforcing the effectiveness ofI-NSGA-II in enhancing the predictive 
accuracy of complex regression models.

In summary, the application of I-NSGA-II across various machine learning models consistently outperforms 
the traditional NSGA-II method in all assessed metrics for both compressive and flexural strengths after 28 days (Ta-
ble 3). This comprehensive analysis conclusively demonstrates the superior predictive capabilities ofthe I-NSGA-II 
approach, establishing its efficacy in enhancing model performance. Notably, for compressive strength (CS28), 
the MLR model exhibits the most notable enhancement, emerging as the optimal model. Similarly, for flexural 
strength (FS28), the SVR model stands out with the most substantial improvements in all key performance in-
dicators, marking it as the best-performing model under the I-NSGA-II framework. Conversely, for both outputs, 
the DT model demonstrates the lowest performance, illustrating the weakness of this algorithm in capturing the 
patterns effectively.

Table 3: Comparative analysis of modeling performance for compressive strength after 28 days (CS28) and 
flexural strength after 28 days (FS28 ) using informed feature selection with I-NSGA-II (I-FS) and normal 
feature selection with NSGA-II (FS). The tables display performance metrics such as R2 , Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) for various 
machine learning models.
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4.3.2. Impact of I-NSGA-II on Model Interpretability, Solution Stability, and Feature Selection

The results illustrated in Figures10and11demonstrate the impact of incorporating predefined feature importanc-
es on model interpretability within feature selection algorithms. Data from two experimental setups – one 
utilizing predefined feature importances through I-NSGA-II and the other without, using standard NSGA-II – were 
collected and analyzed. Each setup involved 139 LOOCV runs across various models, with feature selection fre-
quencies recorded for each model, as discussed in Section 4.3.1.

Figure 10a demonstrates that the first six features, defined a priori as critical (I-NSGA-II), are invariably se-
lected with the highest frequency (139 times) across all model evaluations. In contrast, under the NSGA-II scenario, 
depicted in Figure 10b, which lacks predefined feature guidance, the same six features also emerge as the most 
frequently selected. This consistent trend underscores the accuracy of the initial feature importance assessment by 
the E-FID method. Such parallelism in results validates the initial assumption about the critical nature of these 
features, thus supporting the effectiveness of informed feature preselection in I-NSGA-II.

A notable divergence between the I-NSGA-II and the standard NSGA-II is observed in the stability of fea-
ture selection. I-NSGA-II consistently identifies the predefined features in every model iteration, reflecting 
enhanced stability and reliability in feature selection. This consistency is absent in the NSGA-II approach, where 
feature selection exhibits higher variability. This indicates potential instability and unpredictability in model 
performance without the injection of prior knowledge, which is a critical point of view for evaluating every al-
gorithm.

Moreover, additional features such as Sand Type I (SAI), Ingredient Temperature (IT), and Material Delivery Batch 
Time (DB) exhibit significantly higher selection frequencies in the I-NSGA-II models. This observation suggests 
that the algorithm not only reinforces the importance of predefined features but also effectively identifies and elevates 
other relevant features based on the dataset’s intrinsic characteristics.

Conversely, features such as Superplasticizer (SPP) and Initial Curing Conditions (CC1), which exhibit low 
or zero selection frequencies in some models under I-NSGA-II, highlight the algorithm’s capacity to depriori-
tize less impactful features.
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Figure 10: Comparative Analysis of Feature Selection Frequencies in I-NSGA-II and NSGA-II for  CS28 
:  It highlights the increased stability and efficacy of feature selection when domain-specific knowledge 
is incorporated via  I-NSGA-II. The comparison of the results demonstrates the reliability of E-FID for 

integrating priors into  I-NSGA-II.  For details about the variables, refer to Table 1.  (I-NSGA-II:  Informed  
Non-Dominated  Sorting Genetic Algorithm II,  CS28 :  Compressive Strength at Day 28)

This selective enhancement by I-NSGA-II not only augments the model’s interpretability but also clearly delin-
eates which features are consistently valuable. It takes into account the interactions with predefined features 
to boost prediction performance while simultaneously preserving model simplicity and ensuring stability in the 
solutions.

In case ofFS28, the analysis presented in Figure11reveals distinct differences in feature selection patterns between 
the two testing scenarios. In the I-NSGA-II scenario (Figure 11a), features such as Curing Temperature from day 2 
to day 28 (CT28), Curing Conditions from day 2 to day 28 (CC28), Ingredient Moisture (IM), Initial Curing Tem-
perature (CT1), Air Content (AC), and Material Delivery Batch Time (DB) show maximum selection frequen-
cy (139 times) across all models. This uniformity indicates that these features are consistently deemed crucial 
when predefined importances are considered, suggesting a strong alignment with the predefined importances 
and highlighting the influence of domain knowledge in guiding the selection process.

Conversely, the NSGA-II scenario (Figure 11b) demonstrates more variability in feature selection. Features such 
as IM, CT1, AC, and DB, while still frequently selected, show reduced counts compared to the I-NSGA-II scenario.

Additionally, the interaction assessed by I-NSGA-II reveals that Average Power Consumption (APW), al-
though significant in the NSGA-II scenario, is less emphasized in I-NSGA-II due to the more critical 
interactions with predefined features. Conversely, the importance of Graphite (GRP) and especially Electrical Con-
ductivity (EC) appears less crucial by NSGA-II but shows relatively good interactions with predefined features by 
I-NSGA-II.

Furthermore, interesting results emerge from the comparison of both scenarios – using I-NSGA-II and NS-
GA-II
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– as illustrated in Figures 10 and 11 for both CS28 and FS28. Notably, I-NSGA-II sets the frequency of 
selection for some factors to zero in many cases. By comparing both scenarios, it can be concluded that I-NS-
GA-II tends to definitively decide whether a feature is selected or not, which leads to more stable solutions, 
higher accuracy in prediction performance, and better interpretability for use cases.

As discussed in Section 4.3.1, the selected algorithm for CS28 is MLR and for FS28 is SVR when em-
ploying I-NSGA-II, due to their superior prediction accuracy. From Figure 10, the MLR model selects features 
CT28, CT1, IM, APW, GRP, CC28, SAI, IT, EC, FR, and FLI for their critical importance in the subsequent inves-
tigation phase of the modeling process. Similarly, for SVR, as illustrated in Figure 11, the features CT28, CT1, IM, 
APW, GRP, CC28, SAI, IT, DB, SPP, SF, FR, FLI, and EC are selected for the next phase of investigation due to 
their pivotal roles.

Figure 11: Comparative Analysis of Feature Selection Frequencies in the Models Using I-NSGA-II versus 
NSGA-II for FS28 : These heatmaps highlight the impact of incorporating predefined feature importances on 
the stability and reliability of the feature selection process. The variables are explained in Table 1. (I-NSGA-II: 

Informed Non-Dominated Sorting Genetic Algorithm II, FS28 : Flexural Strength at Day 28)

4.4.  UHPC Manufacturing Process Modeling
The IEM-FAS framework identified the MLR algorithm as the optimal choice for predicting CS28. As illus-

trated in Table 3a and Figure 10, a set of 11 critical features were selected to enhance the accuracy of the MLR 
model. In contrast, for predicting FS28, the framework recommended the SVR algorithm, supported by a dis-
tinct pool of 14 significant features (Table 3b, Figure 11).

The modeling process (Algorithm 2) for CS28 commenced with the inclusion of the most influential factor, 
CT28.

Utilizing CT28 as a solitary predictor yielded an R2  value of 57.10 %, demonstrating the substantial role of 
curing temperature in explaining the variance of CS28. Subsequently, incorporating the first 24 hours of curing 
temperature (CT1) led to a significant enhancement in model performance, increasing R2  to 66.61 %. This improve-
ment suggests that CT1 provides additional variance information not captured by CT28. The further inclusion of 
the impact factor (IM) elevated the R2  to 70.53 %, indicating its critical contribution to the predictive model. 
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The addition of (APW) resulted in a slight performance boost, with R2 increasing to 71.16 %. Incorporating (GRP) 
and (CC28) further refined the model, yielding a notable R2  improvement to 75.40 %. Although the inclusion of 
additional features such as SAI and IT only marginally increased R2  to 75.77 %, these features were retained based 
on domain expertise, recognizing their potential significance in practical scenarios. Ultimately, the model achieved 
its highest adjusted R2 of 74.28 % with a core subset of six predictors: CT28, CT1, IM, APW, GRP, and CC28. This 
subset represents a balance between model accuracy and computational efficiency, highlighting the key variables 
necessary for optimal CS28 prediction.

In the modeling of FS28, the process began with the inclusion of CT28, which yielded an initial average R2  
of 46.23 %, indicating the significant impact of temperature on flexural strength at day 28. The subsequent inclu-
sion of CC28 substantially improved the model’s performance, raising the average R2  to 74.32 %. This notable 
improvement underscores the importance of the interaction between curing conditions after 24 hours until day 28 in 
predicting FS28. However, the introduction of additional variables such as IM, CT1, and AC led to fluctuations 
in model accuracy. Specifically, the incorporation of IM slightly decreased the average R2 to 74.02 %, while CT1 
and AC further reduced it to 72.56 % and 71.51 %, respectively. These variations suggest that while some fea-
tures introduce valuable new information, others may contribute to model complexity without a corresponding 
increase in predictive power. The highest average R2 of 78.89 % was achieved with a specific combination of fea-
tures, including DB and IT, highlighting their importance in enhancing model accuracy.

These findings (Figure 12) emphasize the critical role of curing conditions in optimizing the mechanical proper-
ties of UHPC. Moreover, factors such as delivery batch timing and raw material storage conditions, which affect 
material moisture and temperature, significantly influence the quality of UHPC. Additionally, measurement 
errors in key materials, such as sand and impurities in silica fume (simulated as Graphite content), have a sub-
stantial impact on UHPC performance.

Figure 12: Comparative Performance Evaluation of MLR (Multiple Linear Regression) and SVR (Support 
Vector Regression) in the Test Phase: This figure highlights the impact of adding features on the prediction 
metrics for Compressive Strength at day 28 ( CS28 ) and Flexural Strength at day 28 (FS28). The variables 

are explained in Table 1.

The proposed modeling strategy offers a robust approach to improving UHPC quality, particularly in the 
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event of production faults. By enabling real-time prediction of mechanical properties, this strategy allows for 
prompt adjustments to the UHPC mixture to ensure target performance values are met. If predictions indicate 
that the mixture will not achieve the desired properties, corrective actions can be taken in two primary ways:

•  Modifying the fresh mix based on the identified importance of each parameter, followed by additional 
mixing and re-evaluation of the predicted outcomes.

•  Adjusting the curing regime, including conditions and temperature, to further enhance the mechanical 
properties of the UHPC.

5.  Conclusions and Future Work
This study presents an Informed Automatic Modeling Pipeline, spanning from the Design of Experiments 

to the modeling phase, aimed at predicting the mechanical properties of UHPC in real-time. By adopting a 
holistic approach to UHPC manufacturing, the pipeline addresses the challenge of replicating UHPC products 
with consistent mechanical properties using the  same recipe,  despite  inherent uncertainties in the production 
process. This comprehensive perspective on UHPC manufacturing and its impact on mechanical properties is, 
to the authors’ knowledge, uniquely addressed in this work. The research contributes to a larger project aimed 
at developing a self-healing production system for the construction industry, capable of continuously moni-
toring UHPC quality and recommending real-time corrective actions.

Dueto the lack of datasets with a holistic view of the UHPC manufacturing process, 150 experiments were 
designed and conducted at the laboratory of G.tecz Engineering GmbH. The limited number of experiments, 
coupled with the complex nature of the manufacturing process, resulted in data sparsity. To mitigate this chal-
lenge, the study emphasizes dimensionality reduction and feature selection for modeling UHPC’s mechanical 
properties.

A key contribution of this research is addressing the significant challenges associated with MOFS in high- 
dimensional contexts. These challenges include an exponentially expanding search space, ambiguity in iden-
tifying optimal interactions in complex and sparse datasets, and conflicts among objectives. The development 
ofthe I-NSGA- II, which incorporates insights from the E-FID framework into the traditional NSGA-II algo-
rithm, effectively addresses these issues. The I-NSGA-II not only overcomes the instability typically asso-
ciated with MOFS in high-dimensional, limited-sample scenarios but also enhances the interpretability and 
stability of feature selection.

The findings demonstrate that the I-NSGA-II outperforms the standard NSGA-II in two critical aspects. 
First, it achieves superior prediction performance. Second, it improves the interpretability of the models and 
the consistency of the feature selection process. Specifically, I-NSGA-II stabilizes feature selection frequen-
cy, either consistently selecting or excluding features across all iterations, in contrast to the considerable vari-
ability observed with NSGA-II.

The analysis revealed that curing temperature and curing humidity are the most critical factors influencing 
UHPC quality. Additional key parameters include sand (in terms of content and particle size distribution), 
graphite content (as an impurity in silica fume), and the moisture and temperature conditions during raw ma-
terial storage. These findings highlight the necessity of careful control over these variables to improve UHPC 
quality.

The proposed modeling strategy can significantly improve UHPC quality control by addressing potential 
production faults and enabling real-time prediction of mechanical properties. This allows mixer operators to 
assess whether the UHPC mixture will meet the target specifications.

While the results are promising, this study is limited to datasets concerning the compressive and flexural 
strength of UHPC. Future research should explore a broader range of datasets to validate and refine the pro-
posed methodologies in real-world UHPC manufacturing settings. Addressing these aspects will enable the 
developed framework to contribute more comprehensively to the field of concrete production, ensuring high-
er quality and performance across various concrete types.
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Appendix: Evaluation ofI-NSGA-II on Data Generated by the Welch Test 
Function

The Welch test function, characterized by its complex interactions and nonlinear effects, serves as a benchmark for 
evaluating optimization algorithms [9,10]. The function y is defined as follows:

where the input domain is xi  ∈ [-0:5; 0:5] for i = 1; … ; 20. From the Welch function (Equation 20), it is evi-
dent that inputs x1, x4, x5, x12, x13, x19 , and x20  are the most significant features.

To assess the performance ofthe I-NSGA-II algorithm on data generated by the Welch test function (X ∈ 
R250×20), the most significant features were identified using the E-FID framework (x4 , x12 , x13 , x19 , x20) and 
incorporated as prior knowledge into the IEM-FAS framework. The optimization process was conducted using 
advanced machine learning algorithms, and the results comparing I-NSGA-II with the classical NSGA-II are 
presented in Table 4 and Figure 14. The results show that I-NSGA-II outperforms classical NSGA-II in two key 
aspects: prediction accuracy and solution stability.

As demonstrated in Table 4, the I-NSGA-II significantly enhances the prediction accuracy of models. For instance, 
the SVR model’s R2 value improved from 66.74 % with NSGA-II to 81.62 % with I-NSGA-II. Regarding the sta-
bility of solutions across different algorithm initializations and data partitioning, Figure 14aillustrates the frequen-
cy of feature selection by I-NSGA-II, while Figure 14b shows the selection frequency using classical NSGA-II 
over 250 iterations in a LOOCV strategy. The results indicate that I-NSGA-II tends to produce more stable solutions 
compared to classical NSGA-II. For example, in both MLR and SVR models, the importance of features x1 and 
x5 is more pronounced when using I-NSGA-II. These features are also crucial according to the Welch function 
(Equation 20), demonstrating that I-NSGA-II is more likely to identify significant features with strong interac-
tions with predefined features compared to classical NSGA-II.

Table 4: Comparative  analysis  of  modeling  performance  on  data  generated  by  the  Welch  test  function  
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using  informed  feature selection with I-NSGA-II (I-FS) and normal feature selection with NSGA-II (FS). 
The table displays performance metrics such as R2 , Mean Absolute Error (MAE), and Root Mean Square 

Error (RMSE) for various machine learning models.

Models Abb.

R2  in % MAE in MPa RMSE in MPa

I-FS          FSI-FS FS I-FS FS
Multiple Linear Regression MLR 84.15 78.88 0.6959 0.7973 0.8481     0.9789

Kernel Ridge Regression KRR 81.98 74.08 0.7255 0.8651 0.9042     1.0845
Support Vector Regression SVR 81.62 66.74 0.7163 0.9329 0.9132     1.2284

Decision Tree DT 49.85 46.76 1.1592 1.1833 1.5085     1.5542
Random Forest RF 71.01 68.81 0.8814 0.9016 1.1470     1.1896
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