
23
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative Commons

Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

https://doi.org/10.37420/j.eeer.2024.003

Application of Compact Representation of Or-
dered Set to Air Traffic Conflict Resolution

Ruixin Wang1* ,Nicolas Barnier2

1Laboratory of Complex System Safety and Intelligent Decisions, CAUC-ENAC Joint
Research Center of Applied Mathematics for ATM, Civil Aviation University of China,
Tianjin, China,wang@recherche.enac.fr
2ENAC Lab, Université de Toulouse, France,nicolas.barnier@recherche.enac.fr
*Corresponding author,E-mail:ruixin.wang@recherche.enac.fr

Abstract
The motivation of implementing Adaptive Compact Tree is to improve the performance of Constraint Pro-
gramming(CP) solvers operations, which is used for en-route conflict resolution in. AC-Trees could not only
help CP solver to solve the conflict problem much faster, but also outperform classic BSTs on standard set
operations. In addition, we will also present optimizations that improve the performance of the conflict detec-
tion for the conflict problem previously mentioned. With these optimizations, the conflict detection phase can
be completed in a few seconds. Together with our contribution of the ACTree data structure used in CP solver
which accelerates conflict resolution, the total execution time has been reduced significantly, which opens the
way to a real-time implementation in an operational context.

Keywords：adaptive data structure, constraint programming, conflict resolution

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

24
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative

Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

I INTRODUCTION
Currently, many CP application have been proposed to solve ATM problems. Allignol et al. (2012) Have

classified these categories in three parts: strategic, tactical and operational management. In addition,(Al-
lignol et al., 2013) implements a CP algorithm to solve an en-route conflict problem, which uses range se-
quence as domain representation.

Presented a new framework for the generation and resolution of air traffic conflict problem, which can de-
tect and solve conflicts for almost all instances inside the benchmark indicated in (Allignol et al., 2013) (i.e.
from 5 to 20 aircraft with 151 maneuvers).

The production of instances is highly configurable: the density of the conflicts, the number of authorized
maneuvers and the level of uncertainty are taken into account. The output is a conflict matrix containing all
the undesirable trajectories for all pairs of aircraft with all pairs of maneuvers. (Allignol et al., 2013) pro-
poses two methods for the resolution of the conflicts: Evolutionary Algorithm and Constraint Programming.
Most of these cases were solved in less than 10 seconds, however, for the harder ones, it will take a few
minutes to solve. With the CP algorithm, the optimality proof has been obtained in most cases and cases
without solution have been proven so in less than a second.

As generation of instances is separated from conflict resolution, different algorithms can be tested to solve
this problem by taking the conflict matrix as inputs, which is obtained during the conflict detection process.
But, in a real-time operational context, the total execution time, including conflict detection and resolution,
should be short enough to provide the controllers with optimized maneuvers for all aircraft that solve all
the conflicts. We present some optimizations in the conflict detection process in section 2.1 to minimize
the detection time. In addition, just as previously mentioned, gap intervals trees, the complement of range
sequences, could be implemented in a CP solver to reduce resolution time. Nevertheless, gap intervals trees
are unbalanced, so their operations are efficient only if elements are inserted in random order which is gen-
erally not the case in en-route conflict problems. Hence, we implement a new data structure called AC-Tree,
similar to the self-balanced binary search tree, replacing range sequences (i.e.the domain representation
used in FaCiLe CP solver) to get better performances for the solver described (Allignol et al., 2013) .

Obviously, an effective conflict solver relies on a realistic trajectory prediction. In the benchmark frame-
work proposed in (Allignol et al., 2013) , finding future positions of aircraft can be done using any simula-
tor taking into account different uncertainties such as heading change, wind, beginning and ending maneu-
ver positions, etc. Once the future positions are found, an algorithm proposed in (Allignol et al., 2013) can
detect conflicts for each pair of trajectories and store this information in a conflict matrix C which specifies
the problem entirely and is given as input to the solver. In section 2.1, we will present trajectory model, in-
stances generation and conflict detection where i have made many contributions and compare the resolution
time using range sequence or AC-Tree data structure in section 2.2.

2 AIR CONFLICT RESOLUTION
Give realistic model to build the trajectories at each time step according to the chosen maneuver options

and the uncertainties taken into account. To be compatible with current ATC practice and FMS capabilities,
a limited number of maneuvers is defined for each aircraft involved in a conflict, then each pair of maneu-
vers for two aircraft are tested to verify if there are conflicts between them or not. However, the conflict
detection is not fast enough to realize a real-time system. So, we will firstly introduce the model of trajec-
tory prediction in section 2.1 and present three optimizations to accelerate conflict detection: using Trees to
describe aircraft trajectories, applying Bounding Box to approximate the convex hulls used to represent the
possible positions of aircraft and parallelizing the conflict detection operations in a more effective way sec-
tion 2.1.

25
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative Commons

Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

Firstly, we give a clear definition of ’En-route conflict’:

Figure 1 represents the volume of the inherent protection in the standard separation for en-route phase of
flight.

Definition 3 (En-route conflict between two aircraft) The en-route conflict between two aircraft (i, j) oc-
curs, if the aircraft j is inside the volume of aircraft i.

Figure 1 Standard separation for en-route phase. No other aircraft could be found in this volume.

2.1 Trajectory Prediction
We detail here the uncertainty model, the maneuver options and how the convex hulls of trajectories are

built for every time step.

Maneuvers

The trajectory prediction model will use a discretization of time into steps of duration τ (10 s in our ex-
periments) to describe maneuvers, which is chosen small enough to catch every possible conflict.1

Trajectories are described in the horizontal plane. Initial routes are defined by a list of points, the first
point O is the origin and the last point D is the destination (i.e. a segment of trajectory between two way-
points). Thanks to the Flight Management System of aircraft, several errors can be corrected and do not in-
crease with time, however, various other sources of uncertainties cannot be reduced and must be taken into
account to obtain a realistic model.

In this trajectory model, maneuvers (e.g. heading changes) are engaged on a point of the initial trajectory
referenced by decision variable d0 which represents the distance from the origin O. A distance error ε0 is
added around this point which means that aircraft may change its heading ε0 nautical miles before or after
d0 as a result of uncertainties on the exact location of the turn. An uncertainty εα is also associated to the
heading change angle α at the turning point corresponding to d0. Then the maneuver ends at a curvilinear
distance d1 from d0 (i.e. at d0 + d1 from the origin O) with an associated error ε1, when the aircraft returns
towards its destination point D.

This simple maneuver, depicted in figure 2, is representative of current Air Traffic Control practice and
can be easily implemented by pilots and current FMS technologies.

1　Two facing aircraft flying at 450kt get only 1.25NM closer every 10s, so no conflict will be missed with such a small τ value.

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

26
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative

Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Figure 2 Maneuver Model.

If taking n0 = 5 values for d0, n1 = 5 values for d1 and nα = 7 possible angles i.e. 0, 10, 20 or 30 degrees
to the left or the right of the current heading (there is no use to combine a null heading change α = 0 with
various d0 and d1 values, so that only one maneuver is added when the aircraft is not deviated), the number
of maneuvers for each aircraft is:

So for the values chosen above, nman = 5 × 5 × 6 + 1 = 151. For an instance with n aircraft, the search

space is then of size nmann, i.e. ≈ 6.1021 for a 10-aircraft instance.

Decision Variables

To simplify the access to the conflict matrix C and reduce the number of combinations to the useful ones
(e.g. only one possible maneuver for α = 0), the three decision variables d0, α and d1 associated with air-
craft i are aggregated into a single decision variable mi by a bijection from the allowed triples to interval [1,
nman]. We call M the set of decision variables of the problem:

Handing Uncertainties

In [1], the trajectories envelop are built in order to be able to detect conflicts between two maneuvers
for two different aircraft, while taking various uncertainties into account. The maneuvers descriptions are
stored in a table that defines for each aircraft and each maneuver the possible future positions of the aircraft
by their convex hull, which is computed with Graham’s algorithm.

Each aircraft position is described at multiples of the time step τ (i.e. 0, τ, 2τ, 3τ . . .) by three convex
hulls corresponding to the three possible states of the aircraft:

• S0 if it has not been maneuvered yet;

• S1 if it is currently maneuvered;

• S2 if it is heading towards its destination after a maneuver.

Once the three convex hulls are defined for every time step, they are merged in a single one whenever
several envelops coexist for the same time step (e.g. around turning points of the trajectory).

Actually, different aircraft could have different uncertainties and different maneuver options according to
their ability to follow a route. We only need a convex hull of the possible future positions of an aircraft at
every time step of the trajectory [1].

2.2 Conflict Detection
As presented in [1], the trajectory prediction calculated in the previous section will be used to produce the

data for the benchmark described in this section, generated by detecting conflicts between trajectories. Then
three optimizations that improve the efficiency of the conflict detection are presented.

27
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative Commons

Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

Trajectory Tree

To optimize conflict detection, the trajectories of aircraft can be represented by a prefix tree, which is an
ordered tree data structure, often used to represent a set of strings in a compact way and be able to efficient-
ly retrieve words with a common prefix. In a prefix tree, all the descendants of a node have a common pre-
fix obtained with the path from the root to the node, the root itself being associated with the empty string.
As trajectories of an aircraft can be seen as strings of convex hulls of the same length, they can be efficient-
ly stored and processed with such a data structure.

Once the trajectory prediction described in section 2.1 has been finished, we first start with one node R as
the root of the tree storing the convex hull of the aircraft at t = 0 which is shared by all its trajectories. The
children of a node associated with time step t are recursively created with all the convex hulls at t + τ (i.e. τ
is the duration between two successive time steps, see section 2.1) and each child corresponds to a different
maneuver option. Once we reach the last time step, the nodes are leaves of the tree.

Figure 3 gives an example of trajectory tree with 5 possible trajectories (nman = 2 × 1 × 2 + 1 = 5):

• for each time step, there exists several different nodes that contain different possible convex hulls (e.g.
at t = 5τ, 3 possible nodes represent the convex hulls of turning left, turning right and going straight);

• each node describes the same convex hull for several trajectories: e.g. the green node in figure 3.5 con-
tains the convex hull for all the trajectories at t = 4τ and the yellow node contains the convex hull for
trajectories 2, 3 and 4 at t = 5τ.

Figure 3 A tree trajectory with nman = 5

Trajectory trees can then be used to improve the efficiency of conflict detection in the following way:

lCompare the root of Trajectory Tree of one aircraft to the other one;

lIf the envelops stored in these two nodes which represent the possible positions are not correctly sepa-
rated, all the trajectories associated with the corresponding subtrees will be in conflict, and then cartesian
product is added to the result of the conflict detection;

lOtherwise, it has to check all the children of the first trajectory tree against all the children of the second.

This algorithm helps us to minimize the number of trajectories to compare: once a node is already in con-
flict with another one, the other trajectories that share this node don’t have to be tested in the future. Figure
4 shows the comparison of execution time with different trajectory representations to detect conflicts. In
green, there are nman independent trajectories corresponding to all the possible maneuver options for each
aircraft. In orange, all the trajectories of one aircraft are described by only one trajectory tree containing

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

28
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative

Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

all maneuver options. With Trajectory Tree, it’s able to detect all the conflicts almost 20 percent faster than
with the independent trajectory representation.

Figure 4 Comparison between Trajectory Tree and independent representation.

Bounding Box

During the conflict detection process, the distance between the two two convex hulls stored in the two
nodes representing the possible positions of two aircraft is computed and compared to the standard separa-
tion norm (5 NM).

In most cases, convex hulls are irregular polygons with a lot of vertices and edges, so to test whether two
convex hulls are separated correctly is quite time-consuming. In order to accelerate computation, we pres-
ent Bounding Box to describe the envelop of the aircraft more concisely. Once all the the convex hulls are
calculated, we use a regular rectangle to bound the convex hull. As a rectangle is a regular polygon with
only four vertices and edges with all the edges parallel with x or y axis, we just need to compare the lower
bound of a node to the upper bound of the other one along the x and y axes. If one of these two bounds are
separated correctly, these two nodes aren’t in conflict.

Algorithm 1 shows in pseudocode how the conflicts are detected between two trajectory trees of two
aircraft using tree representation and bounding box. This detect_conflict recursive function first starts from
two trajectory tree roots, if they are in conflict, all the trajectories associated with the corresponding sub-
trees will be in conflict and returns all the couples of conflicting trajectories; if not, it will check all the
children of the first trajectory tree against all the children of the second. At last, it returns the set of all the
couples of conflicting trajectories for these two aircraft.

• bbox(n) returns the bounding box stored in node n;
• in_conflict(bb1,bb2) returns a boolean indicating if the bounding box bb1 is in conflict with the bound-

ing box bb2;
• trajs(n) returns all the indices of trajectories that share node n;
• cartprod(trajs1,trajs2) returns the cartesian product of indices sets of trajs1 and trajs2;
• children(n) returns all the children nodes of node n at the next time step.
•

29
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative Commons

Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

Algorithm 1 Conflict detection between two trajectory trees

Figure 5 shows the comparison of execution times using Convex Hulls and Bounding Box to detect con-
flicts. This graph confirms that using Bounding Box can save almost 85% of the computation time.

Figure 5 Computation time comparison between Vertex Hull and Bounding Box.

Parallelization

To speed up computation times, the conflict detection can be parallelized very easily: each pair of the
aircraft can be tested on a separate processor. All the trajectories are computed by a “master” program on a
single processor and then sent to a number of “slave” programs executed on multiple processors. Then the
master program dispatches the pairs of aircraft to check to the slave program.

Figure 6 Computation time using different number of processors.

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

30
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative

Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Actually, for an en-route conflict problem with n aircraft, there are n(n − 1)/2 trees to be tested. Figure 6
shows the execution time of conflict detection for 6 aircraft (i.e. 15 pairs of trajectory trees) with different
number of processors (i.e. from 2 with only one “slave” programs). Generally, the execution time reduces
with the augmentation of number of processors and reaches its minimum of less than 1.6s when using 16
processors at the same time. However, as can be observed in figure 6, execution time obviously does not
drop linearly with the number of processors. In fact, even if we consider that conflict detection takes exact-
ly the same time tnorm for every pair of trajectory trees, using 12 or 13 “slave” programs will both cost 2
tnorm for a total of 15 pairs of trajectory trees (i.e. 1 < 15/12 < 2 and 1 < 15/13 < 2). There must be at least
15 slaves for the execution time to decrease to tnorm, as it is bounded by [nbpairs/nbproc]*tnorm. More-
over, the computation times for various pairs of trajectory trees differ and cannot be predicted, so relation-
ship between the execution time and the number of processors is combinatorial.

2.3 Conflict Resolution with Constraint Programming
We have used AC-Trees to replace the range sequences that represent finite domains in the FaCiLe CP

solver [4] and solved the conflicts generated in section 2.2.

CSP Model

The set M of decision variables of the CSP is the one defined by equation (1) in section 2.1, where each
variable mi is the index of the maneuver for aircraft i and thus takes a value in [1, nman].

The constraints are expressed as binary constraints, i.e. constraints involving exactly two variables. For a
given couple of aircraft i and j (i < j), the constraint cij between variables mi and mj is defined as the set.

Solution Search

The exploration of the search space is based on an enhanced version of a systematic tree-search algo-
rithm called backtracking, where an inference phase prunes the unfeasible values of each variable at every
node of the tree by propagating local consistency properties in the constraint network. In our algorithm, the
search tree is explored by following the weighted degree adaptive heuristic which learns from the failures
during the search, so that the variables involved in the constraints that have been violated the most so far
are instantiated first. This heuristic proved to be particularly efficient on this problem, as it dynamically fo-
cuses on the hardest parts of the CSP first.

The optimization criterion c simply is the sum of the costs of each single maneuver. The optimization al-
gorithm used to solve the CSP is an adaptation of the backtracking algorithm called branch and bound: each
time a solution with cost cs is found, the constraint c < cs is dynamically added to the CP model, and the
search is resumed to look for a better solution. Eventually, the search for a better solution will fail, proving
that the best solution so far was optimal (or, if no solution has been previously found, that there is no solu-
tion satisfying all the constraints). In order to quickly obtain solutions of good quality, which is mandatory
in an operational real-time context, our search strategy first focus on maneuvers that least increase the cost.

Figure 7 shows the comparison of execution times with range sequences (in solid line) or AC-Trees (in
dashed line) to solve the problem. With AC-Trees, FaCiLe is up to 1.5 times faster than with range se-
quence.

31
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative Commons

Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

https://doi.org/10.37420/j.eeer.2024.001

Figure 7 Resolution time comparison between Range Sequence and AC-Tree.

3 Conclusion and Further Works

• we present three optimizations to the framework proposed in Allignol et al. (2013) for solving en-route

conflicts:

• using trees to describe aircraft trajectories;

• applying Bounding Boxes to approximate the convex hulls used to represent the possible positions of
aircraft;

• parallelizing the conflict detection operations in a more effective way.

With these three optimizations, the conflict detection phase can be completed in a few seconds (e.g. 1.6s
for an en-route conflict problem including 6 aircraft with 649 maneuvers), which could be compatible with
a real-time system. Moreover, we have applied AC-Trees to represent finite domains in the FaCiLe CP solv-
er and solved the conflict problem much faster than with range sequences. Finally, the total execution time
including conflict detection and resolution has been reduced significantly by our optimizations which opens
the way to a real-time implementation in an operational context.

However, to further optimize the conflict detection phase, a sweep and prune algorithm Baraff (1992)
could also be used to compute the conflicting bounding boxes very efficiently.

ACKNOWLEDGMENTS

[1]This article is supported by diversified investment fund of Tianjin under Grant 21JCQNJC00790.

REFERENCES
Allignol, C., Barnier, N., Durand, N., & Alliot, J.-M. (2013). A new framework for solving en-routes
conflicts. In ATM 2013, 10th USA/Europe Air Traffic Management Research and Development Semi-
nar.

Allignol, C., Barnier, N., Flener, P., & Pearson, J. (2012). Constraint programming for air traffic man-
agement: A survey. The Knowledge Engineering Review, 27(03), 361–392.

Baraff, D. (1992). Dynamic simulation of non-penetrating rigid bodies. Technical Report. Cornell
University.

Electrical & Electronic Engineering Research vol.4 Mason Publish Group

32
 © By the author(s); licensee Mason Publish Group (MPG), this work for open access publication is under the Creative

Commons Attribution International License (CC BY 4.0). (http://creativecommons.org/licenses/by/4.0/)

Barnier, N., & Brisset, P. (2001). FaCiLe: A Functional Constraint Library. In CICLOPS – Colloqui-
um on Implementation of Constraint and Logic Programming Systems, CP’01 Workshop, Paphos,
Cyprus, December 2001.

